簡易檢索 / 詳目顯示

研究生: 葉嘉斌
Yeh, Jia-Bin
論文名稱: 無種晶銅擴散阻障層應用於先進銅金屬內連線之研究
Investigations of Seedless Cu Diffusion Barriers for Advanced Cu Metallization
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 212
中文關鍵詞: 銅金屬化製程銅擴散阻障層無種晶銅擴散阻障層自我成長阻障層釕/氮化鎢鈷碳結構非晶鎢化釕合金非晶釕硼碳合金多孔隙超低介電質材料
外文關鍵詞: Cu Metallization, Cu Diffusion Barrier, Seedless Cu Diffusion Barrier, Self-Forming Barrier, Ru/WCoCN Structure, Amorphous RuW alloy, Amorphous Ru-B-C alloy, Porous low-k dielectric
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研究,提昇無種晶銅擴散阻障層(Seedless Cu diffusion barriers)抵擋銅擴散的效果。內容主要分為三種不同的構想。其中兩種主要集中在提升釕金屬抵擋銅擴散做為阻障層之開發,採用共濺鍍技術(Co-sputtering)來合金化釕金屬,另一種為外加一層氮化鎢鈷碳(WCoCN)於釕(Ru)與基板之間。此外,另一種利用自我成長(self-forming)方式,藉由成長一薄氧化鋁阻障層於多孔隙超低介電質材料上,直接做為銅擴散阻障層,應用於先進的銅製程技術中。其中,提升釕金屬做為無種晶銅擴散阻障層的研究,主要為討論薄膜的細微結構(microstructure)與失敗機制(Failure mechanisms)。藉由合金化與雙層結構的構想,已被證實可以大大提高其對銅擴散的抵擋特性。再者,於銅/多孔隙超低介電質整合上,自我成長技術(Self-forming technique)提供了一種不須額外沉積Ta/TaN的可靠方式。藉由自我成長的氧化鋁薄膜,有效地抵擋了銅的擴散並具有較優異的漏電流特性。
      第一種技術為外加一層非晶質氮化鎢鈷碳(WCoCN)薄膜,成為5 nm釕/5 nm 氮化鎢鈷碳雙層結構,如此可提升原本10 nm 釕金屬的阻障能力高達100 ℃以上。TEM、EDXS縱深分析與EDXS點分析指出,僅僅5 nm非晶質氮化鎢鈷碳(WCoCN)薄膜會比10 nm 釕薄膜更具有阻障銅擴散的能力。再者,XRD與片電阻亦指出了5 nm非晶質氮化鎢鈷碳(WCoCN)薄膜會比10 nm 釕薄膜,更有效抵擋具有抵擋矽化銅(Cu3Si)形成。如此證明,藉由額外沉積5 nm非晶質氮化鎢鈷碳(WCoCN)薄膜,可成為一優良雙層結構,應用於先進銅金屬化製程上。
      第二種構想為利用共濺鍍方式,合金化原本多晶柱狀結構的釕金屬,做為有效的無種晶銅擴散阻障層。本論文中,提出了一層5-10 nm非晶質的釕化鎢(RuW)金屬薄膜做為銅擴散阻障層。XRD與電阻量測指出,可提升原本10 nm 釕金屬的阻障能力高達150 ℃以上。XRD與電子選區繞射(Selected Area Electron Diffractions, SAED)結果指出,特定比例的釕化鎢(RuW)金屬合金薄膜,於退火550 ℃以下為非晶質的結構。濺鍍釕(Ru)金屬薄膜的多晶結構,提供了讓銅大量擴散的晶粒邊界路徑,導致阻障層失敗。如此利用合金化的技術,成長非晶質釕化鎢(RuW)金屬合金薄膜,有效提昇了對銅的抵擋特性。
      再者,同樣利用摻入硼與碳於釕(Ru)金屬中,做為釕硼碳(Ru-B-C)合金薄膜的阻障特性也被證實大幅增進。本論文中,兩種成分比例的釕硼碳(Ru-B-C)合金薄膜與釕(Ru)的失敗機制(Failure mechanisms)也被詳細分析與討論。XRD、片電阻與XPS縱深分佈結果指出,釕硼碳(I)(Ru-B-C (I))薄膜,其銅阻障能力,具有接近100 ℃改善。此釕硼碳(I)(Ru-B-C (I))薄膜的失敗機制為,延緩鬆散的矽化釕(Ru2Si3)化合物的形成溫度,同時改善其銅阻障能力。同時,於5 nm非晶質釕硼碳(II)(Ru-B-C (II))薄膜,其阻障特性甚至比10 nm的釕(Ru)薄膜更優異。其XRD與電子繞射分析指出,此釕硼碳(II)(Ru-B-C (II))薄膜,於退火700 ℃以下為非晶質的結構。即使超過其銅化矽(Cu3Si)形成的溫度,亦無鬆散的矽化釕(Ru2Si3)化合物形成,如此改善其銅阻障能力。其失敗機制為,在釕硼碳(II)(Ru-B-C (II))薄膜中,釕(Ru)金屬的再結晶,提供了其讓銅大量擴散的晶粒邊界路徑,導致阻障層失敗。此現象說明,影響阻障層特性的主要為細微結構而非厚度。同時,釕硼碳(Ru-B-C )薄膜亦證實可有效作為無種晶銅擴散阻障層。
      此論文的第三種構想,提供一種整合於多孔隙超低介電質材料上,自我成長阻障層技術(Self-forming barrier technique)。其橫截面穿透式電子顯微影像(Cross-sectional TEM)指出,退火溫度高於400 ℃,直接沉積Cu-3 at.% Al於多孔隙超低介電質薄膜上,在其介面處可形成一連續與平滑的氧化鋁薄膜並做為銅阻障層。極薄的氧化鋁阻障層有效地提供一良好的熱穩定性。其EDXS與XPS縱深分佈分析中,其鋁訊號聚集在銅合金與多孔隙超低介電質的界面處。XPS的化學態鑑定指出了此自我成長的界面層,為穩定的三氧化二鋁(Al2O3)。漏電流測試方面,經過700 ℃高溫退火以後,其漏電流呈現與未退火條件接近的電流大小,證實了無大量銅離子擴散入多孔隙超低介電質中。經由分析,此自我成長氧化鋁阻障層,於整合多孔隙超低介電質上,提供了一實用的技術,也提供了優異的抵擋銅擴散特性。

    This dissertation mainly investigates the improved barrier performance of seedless Cu diffusion barriers for advanced Cu metallization. The contents are primary divided into three distinct techniques. Two of them are aimed at improving the barrier properties of metallic Ru films by alloying Ru films with a co-sputtering technique and insertion of a WCoCN layer between the Ru and substrate. Another approach is using a self-forming AlOx interfacial layer as a diffusion barrier on porous low-k dielectrics for advanced Cu interconnects. The investigation of improved a Ru as seedless Cu diffusion barriers is concluded with a discussion of the microstructure of the films and their failure mechanisms. The barrier performance of the Ru barrier could be significantly improved by alloying and bi-layering techniques. In addition, from the integration viewpoint in the advanced Cu/porous low-k process, a reliable self-forming technique provides a practical approach without additional deposition of Ta/TaN barriers. Relying on a self-forming interfacial AlOx layer, it effectively blocks the Cu diffusion and obtains greater leakage current performance.
      The first technique is insertion of an amorphous WCoCN interlayer to produce a 5 nm Ru/5 nm WCoCN bi-layered structure to improve the barrier performance of 10 nm Ru layers. The bi-layered barrier exhibits more than 100 ℃ improvement with regard to thermal stability against Cu penetration than a single 10 nm Ru liner. The TEM graphs, EDXS depth profiles and spot analysis reveal that a 5 nm amorphous WCoCN film is more effective at blocking Cu diffusion than a 10 nm Ru barrier. In addition, The XRD patterns and sheet resistance results of the 5 nm WCoCN film exhibit more than 100 ℃ higher resistances to Cu3Si formation than the 10 nm Ru barriers. As a result, robust bi-layered Ru/WCoCN structures could be realized for advanced Cu metallization by adding an amorphous WCoCN interlayer.
      The second approach is alloying the polycrystalline Ru films by a co-sputtering technique and can act as a robust seedless Cu barrier for advanced Cu interconnects. In this dissertation, the 5-10 nm-thick amorphous RuW film is demonstrated as a robust seedless Cu diffusion barrier. The XRD and sheet resistance results indicate that the capability against Cu diffusion of the 10 nm-thick RuW layer is approximately 150℃ higher than that of a 10 nm-thick Ru barrier. The results of XRD and selected area electron diffraction (SAED) show that the particular composition ratio of the RuW film sustained an amorphous-like structure after annealing at 550 ℃. The sputtered Ru film has a polycrystalline microstructure, providing grain boundaries as rapid diffusion paths for Cu diffusion, and leading to failure of the barrier layer. The improvement of barrier performance is attributed to the distinct microstructure between polycrystalline Ru and amorphous RuW layer. Thus, the superior barrier properties of the RuW barrier against Cu diffusion are clearly demonstrated.
      Accordingly, the barrier performance of the Ru layer is significantly improved by adding boron and carbon. In this dissertation, the distinct failure modes among Ru, Ru-B-C (I), and Ru-B-C (II) are also discussed. The GIXRD, sheet resistance and XPS depth profile results of Ru-B-C (I) show improvements of the nearly 100 ℃ in barrier performance as compared to pure Ru film. The improved properties of Ru-B-C (I) are attributed to delay the nucleation temperature of less-dense Ru2Si3 up to 700 ℃, which raises the failure temperature of the barrier. Furthermore, the sheet-resistance and GIXRD results show that a 5-nm amorphous Ru-B-C (II) layer is more effective at blocking Cu diffusion than a pure-Ru film that is twice as thick. The results of GIXRD and Fourier-transformed electron diffraction (FTED) indicate that the Ru-B-C (II) film is an amorphous film up to 700 ℃. Even at the failure temperature of Cu3Si formation, absent the less-dense Ru2Si3 compound formation is found. Instead of interfacial Ru2Si3 formation, the failure mode of the amorphous Ru-B-C (II) barrier is recognized as the nucleation of Ru at 750 ℃. The sputtered Ru film has a polycrystalline microstructure, providing grain boundaries as rapid diffusion paths for Cu diffusion, and leading to failure of the barrier layer. The dominating factors in improving a film’s capability as a Cu barrier are its microstructure and phase transformation temperature rather than its thickness. As a result, ultra-thin Ru-B-C films, as Cu barriers, that are capable of direct Cu plating and with much-improved thermal stability are a great candidate for seedless Cu interconnects.
      In the third part of this dissertation, a feasible self-forming technique is developed with porous low-k dielectrics. The cross-sectional TEM images show the deposition of Cu-3 at.% Al directly onto a porous SiOCH film self-forms a smooth and continuous interfacial AlOx layer as a Cu diffusion barrier for annealing at 400 ℃. This ultrathin AlOx barrier is effective and has excellent thermal stability to 700℃. The EDXS line scan and XPS depth profiles show that Al accumulates at the interface. The XPS spectra indicate that the chemical state of the self-formed diffusion layer is Al2O3. The XPS depth profiles reveal that by adding Al into Cu, the self-forming interfacial layer has better performance against Cu diffusion. The leakage currents of the Cu-3 at.% Al on porous low-k samples after annealing up to 700℃ are at the same level as the as-deposited sample. This indicates that no considerable Cu diffusion into porous low-k dielectrics occurred, and the barrier’s superior property against Cu diffusion is thus clearly demonstrated. This self-forming aluminum oxide barrier approach could be a promising technique for the advanced Cu interconnects.

     Abstract (in Chinese) ------(I)  Abstract (in English) ------(IV)  Acknowledgements ------(VIII)  Contents  ------(X)  Table Captions  ------(XIV)  Figure Captions  ------(XV)  Preface  ------(XXI) Chapter 1 Introduction  § 1.1 IC BEOL overview ------1   1.1.1 Overview ------1   1.1.2 RC delay effect ------3  § 1.2 Cu Metallization ------5   1.2.1 The introduction of Cu metallization ------5   1.2.2 Cu diffusion induced degradation of the dielectric ------8   1.2.3 Copper diffusion barrier ------10  § 1.3 Integration Challenges ------12   1.3.1 Resistivity challenge – Cu wiring ------12   1.3.2 Capacitance challenge – Low-k dielectric ------14   1.3.3 Reliability challenge – Stress induced voiding ------15   1.3.4 Summary ------15  § References Cited in Chapter 1 ------22 Chapter 2 Theory, Literature reviews and Motivations  § 2.1 The Fundamental Theory of Diffusion in Solids ------27   2.1.1 Interstitial mechanism diffusion ------28   2.1.2 Substitutional mechanism diffusion ------28   2.1.3 Vacancy mechanism diffusion ------30   2.1.4 High diffusivity path ------31   2.1.5 Grain boundaries diffusion ------34   2.1.6 Dislocation pipe diffusion ------39   2.1.7 Diffusion in nanocrystalline materials ------43  § 2.2 Copper diffusion barriers ------46   2.2.1 The Introduction to Cu diffusion barriers ------46   2.2.2 Basic requirements of Cu diffusion barrier ------48   2.2.3 Thermodynamically Stable Barriers ------50   2.2.4 Stuffed Barriers ------51   2.2.5 Amorphous and Single Crystalline Barriers ------52   2.2.6 Sacrificial Barriers ------53   2.2.7 Self-forming Barriers ------54   2.2.8 Summary ------55  § 2.3 Motivations ------57  § 2.4 Organization of this Dissertation ------60  § References Cited in Chapter 2 ------71 Chapter 3 Experimental Scheme  § 3.1 Experimental materials ------81   3.1.1 Targets ------81   3.1.2 Substrates ------82   3.1.3 Gas ------83   3.1.4 Chemicals ------83  § 3.2 Process Equipments ------84   3.2.1 Sputter System ------84   3.2.2 Annealing System ------85  § 3.3 Analytical Instruments ------86   3.3.1 Four point probe ------86   3.3.2 Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDXS) ------87   3.3.3 X-ray Diffraction (XRD) ------90   3.3.4 X-ray Photoelectron Spectroscopy (XPS) / Electron Spectroscopy for Chemical Analysis (ESCA) ------92   3.3.5 Analytical Transmission Electron Microscopy (TEM) ------94  § 3.4 Experimental Methods and Procedures ------97   3.4.1 Wafer cleaning steps and sample preparation ------97   3.4.2 Sputter process of barrier layer ------97   3.4.3 Sputter process of Cu layer ------98   3.4.4 Annealing process ------98   3.4.5 Physical analyses of material properties ------99   3.4.6 Electrical measurements ------100  § References Cited in Chapter 3 ------108 Chapter 4 Improved bi-layered Ru/WCoCN as seedless Cu diffusion barrier  § 4.1 Motivations ------109  § 4.2 Process flow ------109  § 4.3 Sheet resistance measurements ------110  § 4.4 X-ray diffraction patterns of stacked films ------111  § 4.5 Phase transformations of WCoCN films ------112  § 4.6 SEM observations of top surface ------112  § 4.7 TEM and EDXS Line scan profiles ------113  § 4.8 Cross-sectional TEM and EDXS spot analysis ------114  § 4.9 Leakage current density (J-E) ------114  § 4.10 Discussions and Summary ------115  § References Cited in Chapter 4 ------127 Chapter 5 Amorphous RuW film as a robust Cu diffusion barrier  § 5.1 Background and Motivations ------129  § 5.2 Process flow ------130  § 5.3 Failure temperatures of Ru and various compositional RuW films ------131  § 5.4 Phase transformations of Ru and RuW films ------132  § 5.5 Sheet resistance of Cu/ Ru and RuW /Si stacks ------133  § 5.6 X-ray diffraction patterns of stacked films ------134  § 5.7 Cross-sectional TEM images and electron diffraction patterns (ED) ------135  § 5.8 XPS depth profiles of Cu/Ru and RuW/Si stacks ------136  § 5.9 Leakage current densities (J-E) ------137  § 5.10 Discussions and Summary ------138  § References Cited in Chapter 5 ------149 Chapter 6 Amorphous boron and carbon added Ru film as a highly reliable Cu diffusion barrier  § 6.1 Background and Motivations ------153  § 6.2 Process flow ------154  § 6.3 Sheet resistance measurements ------155  § 6.4 X-ray Diffraction patterns of Cu/barrier/Si stacks ------156  § 6.5 Distinctive failure modes between Ru-B-C and Ru barriers ------157  § 6.6 Cross-sectional TEM images and Electron Diffraction patterns (ED)------159  § 6.7 XPS depth profiles of Cu/barrier/Si stacks ------159  § 6.8 Leakage Current Densities (J-E) ------160  § 6.9 Discussions and Summary ------161  § References Cited in Chapter 6 ------173 Chapter 7 Self-forming AlOx as Cu diffusion barrier on porous low-k films  § 7.1 Background and Motivations ------175  § 7.2 Process flow ------176  § 7.3 X-ray Diffraction patterns ------178  § 7.4 SEM Top-down images ------179  § 7.5 Sheet resistance measurements of Cu-Al/p-SiOCH ------180  § 7.6 Cross-sectional TEM images and EDS line scans ------180  § 7.7 XPS Chemical state analysis of interfacial AlOx layer ------181  § 7.8 XPS depth profiles of Cu/p-SiOCH and Cu-Al/p-SiOCH stacks ------182  § 7.9 Leakage current density (J-E) ------183  § 7.10 Discussions and Summary ------185  § References Cited in Chapter 7 ------195 Chapter 8 Conclusions and Prospects  § 8.1 Conclusions ------199   8.1.1 Improved properties of Ru/WCoCN as seedless Cu diffusion barrier ------199   8.1.2 Amorphous RuW film as Cu diffusion barrier ------200   8.1.3 Amorphous boron and carbon added Ru film as a reliable Cu diffusion barrier ------201   8.1.4 Self-forming AlOx as Cu diffusion barrier on porous low-k films ------203   8.1.5 Summary ------203  § 8.2 Prospects ------207 Appendix A: Author’s related publication List ------209 Appendix B: Author’s Vita ------212

    Chapter 1
    1. Y. Shacham-Diamand, T. Osaka, M. Datta, and T. Ohba, "Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications". Springer, New York, (2009).
    2. S. P. Murarka, M. Eizenberg, and A. K. Sinha, "Interlayer dielectrics for semiconductor technologies". Elsevier/Academic Press, Amsterdam; Boston, (2003).
    3. W. W. Lee, P. S. Ho, and J. Leu, "Low dielectric constant materials for IC applications". Springer, Berlin ; New York, (2003).
    4. "International Technology Roadmap for Semiconductors (ITRS)". Semiconductor International Association, (2003).
    5. S. P. Murarka, "Multilevel interconnections for ULSI and GSI era", Materials Science and Engineering: R: Reports, 19, (1997), pp.87-151.
    6. G. Schindler, W. Steinhogl, G. Steinlesberger, M. Traving, and M. Engelhardt, "Scaling of parasitics and delay times in the backend-of-line", Microelectronic Engineering, 70, (2003), pp.7-12.
    7. M. T. Bohr, "Interconnect scaling-the real limiter to high performance ULSI", IEEE International Electron Devices Meeting (IEDM), (1995).
    8. M. Baklanov, K. Maex, and M. Green, "Dielectric films for advanced microelectronics". John Wiley & Sons, Chichester, West Sussex, England, (2007).
    9. S. P. Murarka, I. V. Verner, and R. J. Gutmann, "Copper-fundamental mechanisms for microelectronic applications". John Wiley & Sons, New York, (2000).
    10. K. Wetzig and C. M. Schneider, "Metal based thin films for electronics", 2nd ed., Wiley-VCH, Weinheim, (2006).
    11. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, "Full copper wiring in a sub-0.25 μm CMOS ULSI technology", IEEE International Electron Devices Meeting (IEDM), (1997).
    12. C. J. Smithells and E. A. Brandes, "Metals reference book", 5th ed., Butterworths, London; Boston, (1976).
    13. S. P. Murarka, "Low dielectric constant materials for interlayer dielectric applications", Solid State Technology, 39, (1996), p.83.
    14. W. W. Lee and P. S. Ho, "Low-dielectric-constant materials for ULSI interlayer-dielectric applications", Mrs Bulletin, 22, (1997), pp.19-24.
    15. Raymond N. Vrtis, Mark L. O'Neill, Jean L. Vincent, Aaron S. Lukas, Brian K. Peterson, Mark D. Bitner, and Eugene J. Karwacki, "Plasma Enhanced Chemical Vapor Deposition of Porous Organosilicate Glass ILD Films With k < 2.4", Materials Research Society Symposium Proceedings, (2003).
    16. J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, "Diffusion of Metals in Silicon Dioxide", Journal of The Electrochemical Society, 133, (1986), pp.1242-1246.
    17. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, "Copper Transport in Thermal SiO2", Journal of The Electrochemical Society, 140, (1993), pp.2427-2432.
    18. H. Wendt, H. Cerva, V. Lehmann, and W. Pamler, "Impact of Copper Contamination on the Quality of Silicon-Oxides", Journal of Applied Physics, 65, (1989), pp.2402-2405.
    19. D. Gupta, "Diffusion in Several Materials Relevant to Cu Interconnection Technology", Materials Chemistry and Physics, 41, (1995), pp.199-205.
    20. G. Raghavan, C. Chiang, P. B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, Mark Bohr, and D. B. Fraser, "Diffusion of copper through dielectric films under bias temperature stress", Thin Solid Films, 262, (1995), pp.168-176.
    21. A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, "Kinetics of copper drift in PECVD dielectrics", IEEE Electron Device Letters, 17, (1996), pp.549-551.
    22. Brian G. Willis and David V. Lang, "Oxidation mechanism of ionic transport of copper in SiO2 dielectrics", Thin Solid Films, 467, (2004), pp.284-293.
    23. A. Kohn, E. Lipp, M. Eizenberg, and Y. Shacham-Diamand, "Copper-related degradation of SiO2 in metal-oxide-semiconductor capacitors subjected to bias thermal stress: Leakage of the minority charge carriers in the inversion layer", Applied Physics Letters, 85, (2004), pp.627-629.
    24. E. Lipp, A. Kohn, and M. Eizenberg, "Lifetime-limited current in Cu-gate metal-oxide-semiconductor capacitors subjected to bias thermal stress", Journal of Applied Physics, 99, (2006), pp.034504.
    25. A. A. Istratov and E. R. Weber, "Physics of copper in silicon", Journal of The Electrochemical Society, 149, (2002), pp.G21-G30.
    26. A. L. S. Loke, J. T. Wetzel, P. H. Townsend, T. Tanabe, R. N. Vrtis, M. P. Zussman, D. Kumar, C. Ryu, and S. S. Wong, "Kinetics of copper drift in low-k polymer interlevel dielectrics", IEEE Transactions on Electron Devices, 46, (1999), pp.2178-2187.
    27. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, "Size-dependent resistivity of metallic wires in the mesoscopic range", Physical Review B, 66, (2002), p.075414.
    28. G. Steinlesberger, M. Engelhardt, G. Schindler, W. Steinhögl, A. von Glasow, K. Mosig, and E. Bertagnolli, "Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes", Microelectronic Engineering, 64, (2002), pp.409-416.
    29. K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals", Mathematical Proceedings of the Cambridge Philosophical Society, 34, (1938), pp.100-108.
    30. E. H. Sondheimer, "The mean free path of electrons in metals", Advances in Physics, 1, (1952), pp.1 - 42.
    31. A. F. Mayadas and M. Shatzkes, "Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces", Physical Review B, 1, (1970), pp.1382.
    32. G. Schindler, W. Steinhögl, G. Steinlesberger, M. Traving, and M. Engelhardt, "Microstructure of cu damascene nano-interconnects", Advanced metallization conference (AMC), (2002).
    33. C. Kittel, "Introduction to solid state physics", 4th ed., Wiley & Sons, New York, (1971).
    34. "International Technology Roadmap for Semiconductors - 2007 Edition", in http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf,
    35. F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, "Carbon nanotubes in interconnect applications", Microelectronic Engineering, 64, (2002), pp.399-408.
    36. A. Grill and V. Patel, "Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition", Applied Physics Letters, 79, (2001), pp.803-805.
    37. H. Miyajima, H. Masuda, T. Idaka, T. Shimayama, Y. Kagawa, K. Tabuchi, H. Yano, T. Hasegawa, S. Kadomura, and T. Yoda, "Material design of balance between high mechanical strength and high plasma resistance for porous PE-CVD SiOC film (k=2.3)", Advanced Metallization Conference (AMC), (2005).
    38. K. Fujita, H. Miyajima, R. Nakata, and N. Miyashita, "Notable Improvement in Porous Low-k film Properties using Electron-Beam Cure Method", IEEE International Interconnect Technology Conference (IITC), (2003).
    39. H. Miyajima, K. Fujita, R. Nakata, T. Yoda, and N. Hayasaka, "The application of simultaneous ebeam cure methods for 65 nm node Cu/low-k technology with hybrid (PAE/MSX) structure", IEEE International Interconnect Technology Conference (IITC), (2004).
    40. M. Shimada, H. Miyajima, R. Nakata, and T. Yoda, "High-performance low-k dielectric using advanced EB-cure process", International Conference on Solid State Device and Materials (SSDM), (2001).
    41. T. Ohnishi, K. Nagaseki, M. Shimada, H. Miyajima, R. Nakata, M. Yamaguchi, J. Murase, and H. Hata, "Advanced EB-cure process and equipment for low-k dielectric", IEEE International Symposium on Semiconductor Manufacturing (ISSM), (2001).
    42. K. Yoneda, M. Kato, S. Kondo, N. Kobayashi, N. Matsuki, K. Matsushita, N. Ohara, A. Fukazawa, and T. Kimura, "Impacts of UV Cure for Reliable Porous PECVD SiOC Integration", IEEE International Interconnect Technology Conference (IITC), (2005).
    43. K. Fujita, H. Miyajima, S. Nakao, T. Sakanaka, R. Nakata, H. Yano, and T. Yoda, "Comparison between UV and EB cure method for porous PAr/porous MSX hybrid structure", International Conference on Solid State Device and Materials (SSDM), (2005).
    44. E. T. Ogawa, J.W. McPherson, J. A. Rosal, K. J. Dickerson, T. C. Chiu, L. Y. Tsung, M. K. Jain, BonifieldT. D., Ondrusek J. C., and W. R. McKee, "Stress-induced voiding under vias connected to wide Cu metal leads", International Reliability Physics Symposium (IRPS), (2002).
    45. M. Kawano, T. Fukase, Y. Yamamoto, T. Ito, S. Yokogawa, H. Tsuda, Y. Kunimune, T. Saitoh, K. Ueno, and M. Sekine, "Stress relaxation in Dual-damascene Cu Interconnects to Suppress Stress-induced Voiding", IEEE International Interconnect Technology Conference (IITC), (2003).
    46. M. Nihei, M. Horibe, A. Kawabata, and Y. and Awano, "Carbon nanotube vias for future LSI interconnects", IEEE International Interconnect Technology Conference (IITC), (2004).
    47. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film - A plateable copper diffusion barrier", Electrochemical and Solid State Letters, 7, (2004), pp.G154-G157. 48. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    49. M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, "Ruthenium barrier/seed layer for Cu/low-k metallization: crystallographic texture, roughness, diffusion, and adhesion", Journal of The Electrochemical Society, 153, (2006), pp.J41-J45.
    50. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization", Applied Surface Science, 256, (2009), pp.688-692.
    51. D. C. Perng, J. B. Yeh, K. C. Hsu, and S. W. Tsai, "Self-forming AlOx layer as Cu diffusion barrier on porous low-k film", Thin Solid Films, 518, (2010), pp.1648-1652.

    Chapter 2
    1. H. Mehrer, "Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes". Springer, Berlin ; New York, (2007).
    2. P. G. Shewmon, "Diffusion in solids", 2nd ed., Minerals, Metals & Materials Society, Warrendale, Pa., (1989).
    3. I. Kaur, Y. Mishin, and W. Gust, "Fundamentals of grain and interphase boundary diffusion", 3rd ed., John Wiley & Sons, Stuttgart, (1995).
    4. D. A. Porter and K. E. Easterling, "Phase transformations in metals and alloys", 2nd ed., CRC Press, Boca Raton, FL, (2004).
    5. E.O. Kirkendall, "Diffusion of Zinc in Alpha Brass", Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers (Trans. AIME), 147, (1942), pp.104-110.
    6. A. D. Smigelskas and E. O. Kirkendall, "Zinc diffusion in alpha brass", Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers (Trans. AIME), 171, (1947), pp.130-142.
    7. J. C. Fisher, "Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion", Journal of Applied Physics, 22, (1951), pp.74-77.
    8. L. G. Harrison, "Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides", Transactions of the Faraday Society, 57, (1961), pp.1191 - 1199.
    9. R. Smoluchowski, "Theory of Grain Boundary Diffusion", Physical Review, 87, (1952), pp.482.
    10. L. C. Luther, "Diffusion Along Dislocations", The Journal of Chemical Physics, 43, (1965), pp.2213-2218.
    11. R. T. P. Whipple, "Concentration contours in grain boundary diffusion", Philosophical Magazine Series 7, 45, (1954), pp.1225 - 1236.
    12. T. Suzuoka, "Exact Solutions of Two Ideal Cases in Grain Boundary Diffusion Problem and the Application to Sectioning Method", Journal of the Physical Society of Japan, 19, (1964), pp.839-851.
    13. A. D. Le Claire and A Rabinovitch, "A mathematical analysis of diffusion in dislocations. I. Application to concentration 'tails'", Journal of Physics C: Solid State Physics, 14, (1981), pp.3863.
    14. A. D. Le Claire and A Rabinovitch, "A mathematical analysis of diffusion in dislocations. II. Influence at low densities on measured diffusion coefficients", Journal of Physics C: Solid State Physics, 15, (1982), pp.3455.
    15. A. D. Le Claire and A Rabinovitch, "A mathematical analysis of diffusion in dislocations. III. Diffusion in a dislocation array with diffusion zone overlap", Journal of Physics C: Solid State Physics, 16, (1983), pp.2087.
    16. T. Surholt and C. Herzig, "Grain boundary self-diffusion in Cu polycrystals of different purity", Acta Materialia, 45, (1997), pp.3817-3823.
    17. K. Maier, "Self-diffusion in copper at "low" temperatures", physica status solidi (a), 44, (1977), pp.567-576.
    18. Y. Shacham-Diamand, T. Osaka, M. Datta, and T. Ohba, "Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications". Springer, New York, (2009).
    19. K. Graff, "Metal impurities in silicon-device fabrication", 2nd ed., Springer, Berlin, (2000).
    20. C. B. Collins and R. O. Carlson, "Properties of Silicon Doped with Iron or Copper", Physical Review, 108, (1957), p.1409.
    21. N. Toyama, "Copper Impurity Levels in Silicon", Solid-State Electronics, 26, (1983), pp.37-46.
    22. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, "Copper Transport in Thermal SiO2", Journal of The Electrochemical Society, 140, (1993), pp.2427-2432.
    23. P. Kapur, J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects - Part I: Resistance modeling", IEEE Transactions on Electron Devices, 49, (2002), pp.590-597.
    24. "International Technology Roadmap for Semiconductors (ITRS)". Semiconductor International Association, (2003).
    25. "International Technology Roadmap for Semiconductors - 2007 Edition", in http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf,
    26. S.-Q. Wang, S. Suthar, C. Hoeflich, and B. J. Burrow, "Diffusion barrier properties of TiW between Si and Cu", Journal of Applied Physics, 73, (1993), pp.2301-2320.
    27. A. E. Kaloyeros and E. Eisenbraun, "Ultrathin diffusion barriers/liners for gigascale copper metallization", Annual Review of Materials Science, 30, (2000), pp.363-385.
    28. M. A. Nicolet, "Diffusion Barriers in Thin-Films", Thin Solid Films, 52, (1978), pp.415-443.
    29. K. Wetzig and C. M. Schneider, "Metal based thin films for electronics", 2nd ed., Wiley-VCH, Weinheim, (2006).
    30. G. C. Schwartz and K. V. Srikrishnan, "Handbook of semiconductor interconnection technology", 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006). 31. J. Li, Y. Shacham-Diamand, and J. W. Mayer, "Copper deposition and thermal stability issues in copper-based metallization for ULSI technology", Materials Science Reports, 9, (1992), pp.1-51.
    32. D. Edelstein, C. Uzoh, Cabral Jr.C., P. DeHaven, P. Buchwalter, A. Simon, E. Cooney III, S. Malhotra, D. Klaus, H. Rathore, B. Ararwala, and D. Nguyen, "An optimal liner for copper Damascene Interconnects", Advanced Metallization Conference (AMC), (2001).
    33. K. H. Min, K. C. Chun, and K. B. Kim, "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14, (1996), pp.3263-3269.
    34. K. T. Nam, A. Datta, S. H. Kim, and K. B. Kim, "Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization", Applied Physics Letters, 79, (2001), pp.2549-2551.
    35. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, and Z. H. Gan, "Effects of dissolved nitrogen in improving barrier properties of ruthenium", Applied Physics Letters, 88, (2006), p.044101.
    36. S. H. Kim, K. T. Nam, A. Datta, H. M. Kim, K. B. Kim, and D. H. Kang, "Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films", Journal of Vacuum Science & Technology B, 21, (2003), pp.804-813.
    37. K. M. Chang, T. H. Yeh, I. C. Deng, and C. W. Shih, "Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition", Journal of Applied Physics, 82, (1997), pp.1469-1475.
    38. S. H. Kim, K. T. Nam, A. Datta, and K. B. Kim, "Failure mechanism of a multilayer (TiN/Al/TiN) diffusion barrier between copper and silicon", Journal of Applied Physics, 92, (2002), pp.5512-5519.
    39. A. Kohn, M. Eizenberg, and Y. Shacham-Diamand, "Copper grain boundary diffusion in electroless deposited cobalt based films and its influence on diffusion barrier integrity for copper metallization", Journal of Applied Physics, 94, (2003), pp.3015-3024.
    40. A. Kohn, M. Eizenberg, Y. Shacham-Diamand, and Y. Sverdlov, "Characterization of electroless deposited Co(W,P) thin films for encapsulation of copper metallization", Materials Science and Engineering A, 302, (2001), pp.18-25.
    41. A. Kohn, M. Eizenberg, and Y. Shacham-Diamand, "Improved diffusion barriers for copper metallization obtained by passivation of grain boundaries in electroless deposited cobalt-based films", Journal of Applied Physics, 92, (2002), pp.5508-5511.
    42. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M. A. Nicolet, "Tantalum-based diffusion barriers in Si/Cu VLSI metallizations", Journal of Applied Physics, 70, (1991), pp.1369-1373.
    43. S. Rawal, D. P. Norton, T. J. Anderson, and L. McElwee-White, "Properties of W-Ge-N as a diffusion barrier material for Cu", Applied Physics Letters, 87, (2005), pp.111902-111903.
    44. H. Wang, Ashutosh Tiwari, X. Zhang, A. Kvit, and J. Narayan, "Copper diffusion characteristics in single-crystal and polycrystalline TaN", Applied Physics Letters, 81, (2002), pp.1453-1455.
    45. M. Takeyama, A. Noya, and T. Fukuda, "Thermal stability of Cu/W/Si contact systems using layers of Cu(111) and W(110) preferred orientations", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 15, (1997), pp.415-420.
    46. L. Castoldi, G. Visalli, S. Morin, P. Ferrari, S. Alberici, G. Ottaviani, F. Corni, R. Tonini, C. Nobili, and M. Bersani, "Copper-titanium thin film interaction", Microelectronic Engineering, 76, (2004), pp.153-159.
    47. S. P. Murarka, "Multilevel interconnections for ULSI and GSI era", Materials Science and Engineering: R: Reports, 19, (1997), pp.87-151.
    48. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, "Oxidation resistant high conductivity copper films", Applied Physics Letters, 64, (1994), pp.2897-2899.
    49. C. J. Smithells and E. A. Brandes, "Metals reference book", 5th ed., Butterworths, London; Boston, (1976).
    50. L. S. Darken and R. W. Gurry, "Physical chemistry of metals". McGraw-Hill, New York, (1953).
    51. J. Koike and M. Wada, "Self-forming diffusion barrier layer in Cu-Mn alloy metallization", Applied Physics Letters, 87, (2005), pp.041911-041913.
    52. J. Koike, M. Haneda, J. Iijima, and M. Wada, "Cu Alloy Metallization for Self-Forming Barrier Process", IEEE International Interconnect Technology Conference (IITC), (2006).
    53. M. J. Frederick, R. Goswami, and G. Ramanath, "Sequence of Mg segregation, grain growth, and interfacial MgO formation in Cu-Mg alloy films on SiO2 during vacuum annealing", Journal of Applied Physics, 93, (2003), pp.5966-5972.
    54. J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, "Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface", Journal of Applied Physics, 102, (2007), pp.043527-043527.
    55. T. Watanabe, H. Nasu, T. Usui, G. Minamihaba, N. Kurashima, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata, "Self-Formed Barrier Technology using CuMn Alloy Seed for Copper Dual-Damascene Interconnect with porous-SiOC/ porous-PAr Hybrid Dielectric", IEEE International Interconnect Technology Conference (IITC), (2007).
    56. Y. Ohoka, Y. Ohba, A. Isobayashi, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura, and S. Kadomura, "Integration of High Performance and Low Cost Cu/Ultra Low-k SiOC(k=2.0) Interconnects with Self-formed Barrier Technology for 32nm-node and Beyond", IEEE International Interconnect Technology Conference (IITC), (2007).
    57. C. J. Liu and J. S. Chen, "Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier", Applied Physics Letters, 80, (2002), p.2678-2680.
    58. J. Iijima, Y. Fujii, K. Neishi, and J. Koike, "Resistivity reduction by external oxidation of Cu-Mn alloy films for semiconductor interconnect application", Journal of Vacuum Science & Technology B, 27, (2009), pp.1963-1968.
    59. K. L. Chopra, "Thin film phenomena". McGraw-Hill, New York, (1969).
    60. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, and R. Rosenberg, "Liner materials for direct electrodeposition of Cu", Applied Physics Letters, 83, (2003), pp.2330-2332.
    61. M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, and H. T. Chiu, "Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si", Journal of Applied Physics, 79, (1996), pp.6932-6938.
    62. M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Drescher, "Behavior of thin Ta-based films in the Cu/barrier/Si system", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17, (1999), pp.993-1001.
    63. K. M. Takahashi, "Electroplating copper onto resistive barrier films", Journal of The Electrochemical Society, 147, (2000), pp.1414-1417.
    64. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    65. O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, "Electrodeposition of copper thin film on ruthenium - A potential diffusion barrier for Cu interconnects", Journal of The Electrochemical Society, 150, (2003), pp.C347-C350.
    66. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film - A plateable copper diffusion barrier", Electrochemical and Solid State Letters, 7, (2004), pp.G154-G157. 67. T. P. Moffat, M. Walker, P. J. Chen, J. E. Bonevich, W. F. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala, M. Leskela, and D. Josell, "Electrodeposition of Cu on Ru barrier layers for damascene processing", Journal of The Electrochemical Society, 153, (2006), pp.C37-C50.
    68. H. Okamoto, T. B. Massalski, and ASM International., "Binary alloy phase diagrams", 2nd ed., ASM International, Materials Park, Ohio, (1990).
    69. M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, "Ruthenium barrier/seed layer for Cu/low-k metallization: crystallographic texture, roughness, diffusion, and adhesion", Journal of The Electrochemical Society, 153, (2006), pp.J41-J45.
    70. M. J. Frederick and G. Ramanath, "Kinetics of interfacial reaction in Cu-Mg alloy films on SiO2", Journal of Applied Physics, 95, (2004), pp.363-366.
    71. T. C. Totemeier and W. F. Gale, "Smithells metals reference book", 8th ed., Elsevier Butterworth-Heinemann, Amsterdam; London, (2004).
    72. K. Maekawa, K. Mori, N. Suzumura, K. Honda, Y. Hirose, K. Asai, A. Uedono, and M. Kojima, "Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities", Microelectronic Engineering, 85, (2008), pp.2137-2141.
    73. X. P. Qu, J. J. Tan, M. Zhou, T. Chen, Q. Xie, G. P. Ru, and B. Z. Li, "Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization", Applied Physics Letters, 88, (2006), p.151912.
    74. L. C. Leu, D. P. Norton, L. McElwee-White, and T. J. Anderson, "Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects", Applied Physics Letters, 92, (2008), p.111917.
    75. S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim, K. B. Kim, and H. Sohn, "A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu", Journal of The Electrochemical Society, 155, (2008), pp.H589-H594.
    76. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization", Applied Surface Science, 256, (2009), pp.688-692.
    77. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon, and L. Chan, "Study of Ru barrier failure in the Cu/Ru/Si system", Journal of Materials Research, 22, (2007), pp.2505-2511.
    78. T. N. Arunagiri, Y. B. Zhang, O. Chyan, M. J. Kim, and T. Q. Hurd, "Interfacial diffusion studies of Cu/(5 nm Ru)/Si structures - Physical vapor deposited vs electrochemically deposited Cu", Journal of The Electrochemical Society, 152, (2005), pp.G808-G812.
    79. L. B. Henderson and J. G. Ekerdt, "Time-to-failure analysis of 5 nm amorphous Ru(P) as a copper diffusion barrier", Thin Solid Films, 517, (2009), pp.1645-1649.
    80. J. H. Shin, H. W. Kim, K. Agapiou, R. A. Jones, G. S. Hwang, and J. G. Ekerdt, "Effects of P on amorphous chemical vapor deposition Ru-P alloy films for Cu interconnect liner applications", Journal of Vacuum Science & Technology A, 26, (2008), pp.974-979.
    81. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Phosphorous doped Ru film for advanced Cu diffusion barriers", Applied Surface Science, 254, (2008), pp.6059-6062.
    82. S. H. Kwon, O. K. Kwon, J. S. Min, and S. W. Kang, "Plasma-enhanced atomic layer deposition of Ru-TiN thin films for copper diffusion barrier metals", Journal of The Electrochemical Society, 153, (2006), pp.G578-G581.
    83. C. W. Chen, J. S. Chen, and J. S. Jeng, "Effectiveness of Ta Addition on the Performance of Ru Diffusion Barrier in Cu Metallization", Journal of The Electrochemical Society, 155, (2008), pp.H1003-H1008.
    84. M. G. Fontana and R.W. Staehle, "Advances in corrosion science and technology vol. 4". Plenum Press, New York, (1974).
    85. F. H. Stott, "The protective action of oxide scales in gaseous environments at high temperature", Reports on Progress in Physics, 50, (1987), p.861.
    86. H. Ono, T. Nakano, and T. Ohta, "Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W)", Applied Physics Letters, 64, (1994), pp.1511-1513.
    87. D. C. Perng, K. C. Hsu, S. W. Tsai, and J. B. Yeh, "Thermal and Electrical Properties of PVD Ru(P) Film as Cu Diffusion Barrier", Microelectronic Engineering, 87, (2010), pp.365-369.
    88. C. W. Chen, J. S. Chen, and J. S. Jeng, "Characteristics of Thermally Robust 5 nm Ru-C Diffusion Barrier/Cu Seed Layer in Cu Metallization", Journal of The Electrochemical Society, 156, (2009), pp.H724-H728.
    89. W. Sari, T. K. Eom, C. W. Jeon, H. Sohn, and S. H. Kim, "Improvement of the Diffusion Barrier Performance of Ru by Incorporating a WNx Thin Film for Direct-Plateable Cu Interconnects", Electrochemical and Solid State Letters, 12, (2009), pp.H248-H251.
    90. A. Suzuki and Y. Mishin, "Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries", Interface Science, 11, (2003), pp.131-148.

    Chapter 3
    1. "ModelMILA-5000 Infrared Lamp Heating System Instruction Manual", in http://www.ulvac.com/download/mila-5000%20e%20disk/mila5000_hard_.pdf, ULVAC-RIKO Engineering Department, Inc.
    2. G. C. Schwartz and K. V. Srikrishnan, "Handbook of semiconductor interconnection technology", 2nd ed., CRC/Taylor & Francis, Boca Raton, FL, (2006). 3. H. Bubert and H. Jenett, "Surface and thin film analysis: a compendium of principles, instrumentation, applications". Wiley-VCH, Weinheim, (2002).
    4. O. C. Wells, "Scanning electron microscopy". McGraw-Hill, New York, (1974).
    5. M. Birkholz, P. F. Fewster, and C. Genzel, "Thin film analysis by X-ray scattering". Wiley-VCH, Weinheim, (2006).
    6. K. Wetzig and C. M. Schneider, "Metal based thin films for electronics", 2nd ed., Wiley-VCH, Weinheim, (2006).
    7. J. F. Watts and J. Wolstenholme, "An introduction to surface analysis by XPS and AES". John Wiley & Sons, Chichester, West Sussex ; New York, NY, (2003).
    8. L. I. Maissel and R. Glang, "Handbook of thin film technology". McGraw-Hill, New York, (1970).
    9. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data". Perkin-Elmer, Physical Electronics Division, Eden Prairie, Minnesota, (1995).
    10. B. V. Crist, "Handbook of monochromatic XPS spectra ". John Wiley & Sons, New York, (2000).
    11. "NIST X-ray Photoelectron Spectroscopy Database", in http://srdata.nist.gov/xps/Default.aspx, The Measurement Services Division of the National Institute of Standards and Technology (NIST).
    12. T. Hahn and International Union of Crystallography., "International tables for crystallography. Vol. A: Space-group symmetry", 5th rev. ed., Springer Netherlands, Kluwer, Dordrecht, (2002).

    Chapter 4
    1. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization", Applied Surface Science, 256, (2009), pp.688-692.
    2. J. B. Yeh, D. C. Perng, and K. C. Hsu, "Improvement of Cu seedless Ru barrier by insertion of an amorphous WCoCN interlayer", International Conference on Solid State Device and Materials (SSDM), (2009).
    3. D. H. Kim, S. L. Cho, K. B. Kim, J. J. Kim, J. W. Park, and J. J. Kim, "Diffusion barrier performance of chemically vapor deposited TiN films prepared using tetrakis-dimethyl-amino titanium in the Cu/TiN/Si structure", Applied Physics Letters, 69, (1996), pp.4182-4184.
    4. S. H. Kim, K. T. Nam, A. Datta, H. M. Kim, K. B. Kim, and D. H. Kang, "Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films", Journal of Vacuum Science & Technology B, 21, (2003), pp.804-813.
    5. Y. He and J. Y. Feng, "Diffusion barrier performances of direct current sputter-deposited Mo and MoxN films between Cu and Si", Journal of Crystal Growth, 263, (2004), pp.203-207.
    6. A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination", Physical Review, 56, (1939), p.978.
    7. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film - A plateable copper diffusion barrier", Electrochemical and Solid State Letters, 7, (2004), pp.G154-G157. 8. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon, and L. Chan, "Study of Ru barrier failure in the Cu/Ru/Si system", Journal of Materials Research, 22, (2007), pp.2505-2511.
    9. O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, "Electrodeposition of copper thin film on ruthenium - A potential diffusion barrier for Cu interconnects", Journal of the Electrochemical Society, 150, (2003), pp.C347-C350.
    10. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    11. E. J. Rapperport and M. F. Smith A. R. Kaufmann, WADD Technical Report, 60-132, (1960), p.181.
    12. E. J. Rapperport and M. F. Smith, "Constitution Diagram Tungsten-Ruthenium", Transactions of the Metallurgical Society of AIME, 230, (1964), p.6.
    13. T. N. Arunagiri, Y. B. Zhang, O. Chyan, M. J. Kim, and T. Q. Hurd, "Interfacial diffusion studies of Cu/(5 nm Ru)/Si structures - Physical vapor deposited vs electrochemically deposited Cu", Journal of The Electrochemical Society, 152, (2005), pp.G808-G812.

    Chapter 5
    1. J. B. Yeh, D. C. Perng, K. C. Hsu, and Climbing Huang, "Diffusion barrier properties of 10 nm RuW alloy for advanced Cu metallization", Advanced Metallization Conference 19th Asian Session (ADMETA), (2009).
    2. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film - A plateable copper diffusion barrier", Electrochemical and Solid State Letters, 7, (2004), pp.G154-G157. 3. T. N. Arunagiri, Y. B. Zhang, O. Chyan, M. J. Kim, and T. Q. Hurd, "Interfacial diffusion studies of Cu/(5 nm Ru)/Si structures - Physical vapor deposited vs electrochemically deposited Cu", Journal of The Electrochemical Society, 152, (2005), pp.G808-G812.
    4. H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, and Y. Shimogaki, "Cu wettability and diffusion barrier property of Ru thin film for Cu metallization", Journal of The Electrochemical Society, 152, (2005), pp.G594-G600.
    5. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon, and L. Chan, "Study of Ru barrier failure in the Cu/Ru/Si system", Journal of Materials Research, 22, (2007), pp.2505-2511.
    6. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, and Z. H. Gan, "Effects of dissolved nitrogen in improving barrier properties of ruthenium", Applied Physics Letters, 88, (2006), p.044101.
    7. S. Ogawa, N. Tarumi, M. Abe, M. Shiohara, H. Imamura, and S. Kondo, "Amorphous Ru / Polycrystalline Ru Highly Reliable Stacked Layer Barrier Technology", IEEE International Interconnect Technology Conference (IITC), (2008).
    8. J. H. Shin, A. Waheed, W. A. Winkenwerder, H. W. Kim, K. Agapiou, R. A. Jones, G. S. Hwang, and J. G. Ekerdt, "Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films", Thin Solid Films, 515, (2007), pp.5298-5307.
    9. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Phosphorous doped Ru film for advanced Cu diffusion barriers", Applied Surface Science, 254, (2008), pp.6059-6062.
    10. D. Jeong, H. Inoue, and H. Shinriki, "Plasma Enhanced Atomic Layer Deposition of Ru-Ta composite film as a Seed Layer for CVD Cu filling", IEEE International Interconnect Technology Conference (IITC), (2008).
    11. K. Mori, K. Ohmori, N. Torazawa, S. Hirao, S. Kaneyama, H. Korogi, K. Maekawa, S. Fukui, K. Tomita, M. Inoue, H. Chibahara, Y. Imai, N. Suzumura, K. Asai, and M. Kojima, "Effects of Ru-Ta Alloy Barrier on Cu Filling and Reliability for Cu Interconnects", IEEE International Interconnect Technology Conference (IITC), (2008).
    12. C. W. Chen, J. S. Chen, and J. S. Jeng, "Effectiveness of Ta Addition on the Performance of Ru Diffusion Barrier in Cu Metallization", Journal of The Electrochemical Society, 155, (2008), pp.H1003-H1008.
    13. C. W. Chen, J. S. Chen, and J. S. Jeng, "Improvement on the diffusion barrier performance of reactively sputtered Ru-N film by incorporation of Ta", Journal of The Electrochemical Society, 155, (2008), pp.H438-H442.
    14. N. Torazawa, T. Hinomura, K. Mori, Y. Koyama, S. Hirao, E. Kobori, H. Korogi, K. Maekawa, K. Tomita, H. Chibahara, N. Suzumura, K. Asai, H. Miyatake, and S. Matsumoto, "Effects of N doping in Ru-Ta alloy barrier on film property and reliability for Cu interconnects", IEEE International Interconnect Technology Conference (IITC), (2009).
    15. H. Okamoto, T. B. Massalski, and ASM International., "Binary alloy phase diagrams", 2nd ed., ASM International, Materials Park, Ohio, (1990).
    16. A. W. D. Vandergon, J. C. Barbour, R. Dereus, and F. W. Saris, "Thermal-Stability of Thin-Film Amorphous W-Ru, W-Re, and Ta-Ir Alloys", Journal of Applied Physics, 61, (1987), pp.1212-1215.
    17. O. Chyan, T. N. Arunagiri, and T. Ponnuswamy, "Electrodeposition of copper thin film on ruthenium - A potential diffusion barrier for Cu interconnects", Journal of The Electrochemical Society, 150, (2003), pp.C347-C350.
    18. B. Gao, Y. Ma, Y. Cao, W. Yang, and J. Yao, "Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide", The Journal of Physical Chemistry B, 110, (2006), pp.14391-14397.
    19. B. D. Cullity, "Elements of x-ray diffraction", 2d ed., Addison-Wesley Pub. Co., Reading, Mass., (1978).
    20. C. Y. Yang and J. S. Chen, "Investigation of copper agglomeration at elevated temperatures", Journal of The Electrochemical Society, 150, (2003), pp.G826-G830.
    21. S. H. Kim, K. T. Nam, A. Datta, H. M. Kim, K. B. Kim, and D. H. Kang, "Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films", Journal of Vacuum Science & Technology B, 21, (2003), pp.804-813.
    22. Y. He and J. Y. Feng, "Diffusion barrier performances of direct current sputter-deposited Mo and MoxN films between Cu and Si", Journal of Crystal Growth, 263, (2004), pp.203-207.
    23. C. M. Liu, W. L. Liu, W. J. Chen, S. H. Hsieh, T. K. Tsai, and L. C. Yang, "ITO as a diffusion barrier between Si and Cu", Journal of The Electrochemical Society, 152, (2005), pp.G234-G239.
    24. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    25. D. A. Porter and K. E. Easterling, "Phase transformations in metals and alloys", 2nd ed., CRC Press, Boca Raton, FL, (2004).
    26. T. Fukuda, H. Nishino, and H. Yanazawa, "Analysis of leakage current of low-k materials for use as interlayer dielectric", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43, (2004), pp.86-90.
    27. S. Yu, T. K. S. Wong, X. Hu, and J. Wei, "A study on Cu diffusion to sol-gel derived low-k films", Microelectronic Engineering, 77, (2005), pp.14-20.
    28. J. B. Yeh, D. C. Perng, and K. C. Hsu, "Amorphous RuW Film as a Diffusion Barrier for Advanced Cu Metallization", Journal of The Electrochemical Society, 157, (2010), pp.H810-H814.

    Chapter 6
    1. "International Technology Roadmap for Semiconductors - 2007 Edition", in http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Interconnect.pdf,
    2. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, and R. Rosenberg, "Liner materials for direct electrodeposition of Cu", Applied Physics Letters, 83, (2003), pp.2330-2332.
    3. H. Okamoto, T. B. Massalski, and ASM International., "Binary alloy phase diagrams", 2nd ed., ASM International, Materials Park, Ohio, (1990).
    4. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film - A plateable copper diffusion barrier", Electrochemical and Solid State Letters, 7, (2004), pp.G154-G157. 5. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    6. M. Damayanti, T. Sritharan, S. G. Mhaisalkar, E. Phoon, and L. Chan, "Study of Ru barrier failure in the Cu/Ru/Si system", Journal of Materials Research, 22, (2007), pp.2505-2511.
    7. M. Damayanti, T. Sritharan, Z. H. Gan, S. G. Mhaisalkar, N. Jiang, and L. Chan, "Ruthenium barrier/seed layer for Cu/low-k metallization: crystallographic texture, roughness, diffusion, and adhesion", Journal of The Electrochemical Society, 153, (2006), pp.J41-J45.
    8. T. N. Arunagiri, Y. B. Zhang, O. Chyan, M. J. Kim, and T. Q. Hurd, "Interfacial diffusion studies of Cu/(5 nm Ru)/Si structures - Physical vapor deposited vs electrochemically deposited Cu", Journal of The Electrochemical Society, 152, (2005), pp.G808-G812.
    9. D. C. Perng, K. C. Hsu, S. W. Tsai, and J. B. Yeh, "Thermal and Electrical Properties of PVD Ru(P) Film as Cu Diffusion Barrier", Microelectronic Engineering, 87, (2010), pp.365-369.
    10. J. H. Shin, H. W. Kim, K. Agapiou, R. A. Jones, G. S. Hwang, and J. G. Ekerdt, "Effects of P on amorphous chemical vapor deposition Ru-P alloy films for Cu interconnect liner applications", Journal of Vacuum Science & Technology A, 26, (2008), pp.974-979.
    11. C. W. Chen, J. S. Chen, and J. S. Jeng, "Effectiveness of Ta Addition on the Performance of Ru Diffusion Barrier in Cu Metallization", Journal of The Electrochemical Society, 155, (2008), pp.H1003-H1008.
    12. S. H. Kwon, O. K. Kwon, J. S. Min, and S. W. Kang, "Plasma-enhanced atomic layer deposition of Ru-TiN thin films for copper diffusion barrier metals", Journal of The Electrochemical Society, 153, (2006), pp.G578-G581.
    13. S. Rawal, D. P. Norton, T. J. Anderson, and L. McElwee-White, "Properties of W-Ge-N as a diffusion barrier material for Cu", Applied Physics Letters, 87, (2005), p.111902.
    14. M. A. Nicolet, "Ternary Amorphous Metallic Thin-Films as Diffusion-Barriers for Cu Metallization", Applied Surface Science, 91, (1995), pp.269-276.
    15. S. H. Kim, K. T. Nam, A. Datta, H. M. Kim, K. B. Kim, and D. H. Kang, "Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films", Journal of Vacuum Science & Technology B, 21, (2003), pp.804-813.
    16. Y. He and J. Y. Feng, "Diffusion barrier performances of direct current sputter-deposited Mo and MoxN films between Cu and Si", Journal of Crystal Growth, 263, (2004), pp.203-207.
    17. Y. Matsui, Y. Nakamura, Y. Shimamoto, and M. Hiratani, "An oxidation barrier layer for metal-insulator-metal capacitors: ruthenium silicide", Thin Solid Films, 437, (2003), pp.51-56.
    18. T. Fukuda, H. Nishino, and H. Yanazawa, "Analysis of leakage current of low-k materials for use as interlayer dielectric", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43, (2004), pp.86-90.
    19. S. Yu, T. K. S. Wong, X. Hu, and J. Wei, "A study on Cu diffusion to sol-gel derived low-k films", Microelectronic Engineering, 77, (2005), pp.14-20.
    20. D. C. Perng, J. B. Yeh, K. C. Hsu, and Y. C. Wang, "5 nm Amorphous Boron and Carbon Added Ru Film as a Highly Reliable Cu Diffusion Barrier", Electrochemical and Solid-State Letters, 13, (2010), pp.H290-H293.

    Chapter 7
    1. D. C. Perng, J. B. Yeh, K. C. Hsu, and S. W. Tsai, "Self-forming AlOx layer as Cu diffusion barrier on porous low-k film", Thin Solid Films, 518, (2010), pp.1648-1652.
    2. K. H. Min, K. C. Chun, and K. B. Kim, "Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14, (1996), pp.3263-3269.
    3. M. H. Tsai, S. C. Sun, C. E. Tsai, S. H. Chuang, and H. T. Chiu, "Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si", Journal of Applied Physics, 79, (1996), pp.6932-6938.
    4. M. Stavrev, D. Fischer, F. Praessler, C. Wenzel, and K. Drescher, "Behavior of thin Ta-based films in the Cu/barrier/Si system", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17, (1999), pp.993-1001.
    5. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, and R. Rosenberg, "Liner materials for direct electrodeposition of Cu", Applied Physics Letters, 83, (2003), pp.2330-2332.
    6. T. N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M. J. Kim, K. H. Chen, C. T. Wu, and L. C. Chen, "5 nm ruthenium thin film as a directly plateable copper diffusion barrier", Applied Physics Letters, 86, (2005), p.083104.
    7. C. J. Liu and J. S. Chen, "Low leakage current Cu(Ti)/SiO2 interconnection scheme with a self-formed TiOx diffusion barrier", Applied Physics Letters, 80, (2002), pp.2678-2680.
    8. J. Koike and M. Wada, "Self-forming diffusion barrier layer in Cu-Mn alloy metallization", Applied Physics Letters, 87, (2005), pp.041911-041913.
    9. T. Watanabe, H. Nasu, T. Usui, G. Minamihaba, N. Kurashima, A. Gawase, M. Shimada, Y. Yoshimizu, Y. Uozumi, and H. Shibata, "Self-Formed Barrier Technology using CuMn Alloy Seed for Copper Dual-Damascene Interconnect with porous-SiOC/ porous-PAr Hybrid Dielectric", IEEE International Interconnect Technology Conference (IITC), (2007).
    10. S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, "Formation of Ti diffusion barrier layers in thin Cu(Ti) alloy films", Journal of Electronic Materials, 34, (2005), pp.592-599.
    11. J. Koike, M. Haneda, J. Iijima, Y. Otsuka, H. Sako, and K. Neishi, "Growth kinetics and thermal stability of a self-formed barrier layer at Cu-Mn/SiO2 interface", Journal of Applied Physics, 102, (2007), pp.043527-043527.
    12. T. Usui, H. Nasu, J. Koike, M. Wada, S. Takahashi, N. Shimizu, T. Nishikawa, A. Yoshimaru, and H. Shibata, "Low resistive and highly reliable Cu dual-damascene interconnect technology using self-formed MnSixOy barrier layer", IEEE International Interconnect Technology Conference (IITC), (2005).
    13. J. Koike, M. Haneda, J. Iijima, and M. Wada, "Cu Alloy Metallization for Self-Forming Barrier Process", IEEE International Interconnect Technology Conference (IITC), (2006).
    14. L. S. Darken and R. W. Gurry, "Physical chemistry of metals". McGraw-Hill, New York, (1953).
    15. H. Okamoto, T. B. Massalski, and ASM International., "Binary alloy phase diagrams", 2nd ed., ASM International, Materials Park, Ohio, (1990).
    16. T. C. Totemeier and W. F. Gale, "Smithells metals reference book", 8th ed., Elsevier Butterworth-Heinemann, Amsterdam; London, (2004).
    17. K. Maekawa, K. Mori, N. Suzumura, K. Honda, Y. Hirose, K. Asai, A. Uedono, and M. Kojima, "Impact of Al in Cu alloy interconnects on electro and stress migration reliabilities", Microelectronic Engineering, 85, (2008), pp.2137-2141.
    18. M. G. Fontana and R.W. Staehle, "Advances in corrosion science and technology vol. 4". Plenum Press, New York, (1974).
    19. F. H. Stott, "The protective action of oxide scales in gaseous environments at high temperature", Reports on Progress in Physics, 50, (1987), p.861.
    20. Raymond N. Vrtis, Mark L. O'Neill, Jean L. Vincent, Aaron S. Lukas, Brian K. Peterson, Mark D. Bitner, and Eugene J. Karwacki, "Plasma Enhanced Chemical Vapor Deposition of Porous Organosilicate Glass ILD Films With k < 2.4", Materials Research Society Symposium Proceedings, (2003).
    21. D. C. Perng, J. B. Yeh, and K. C. Hsu, "Phosphorous doped Ru film for advanced Cu diffusion barriers", Applied Surface Science, 254, (2008), pp.6059-6062.
    22. A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination", Physical Review, 56, (1939), p.978.
    23. M. Tada, M. Abe, N. Furutake, F. Ito, T. Tonegawa, M. Sekine, and Y. Hayashi, "Improving Reliability of Copper Dual-Damascene Interconnects by Impurity Doping and Interface Strengthening", IEEE Transactions on Electron Devices, 54, (2007), pp.1867-1877.
    24. Y. Matsubara, M. Komuro, T. Onodera, N. Ikarashi, Y. Hayashi, and M. Sekine, "Thermally robust 90 nm node Cu-Al wiring technology using solid phase reaction between Cu and Al", Symposium on VLSl Technology Digest of Technical Papers, (2003).
    25. K. Maekawa, K. Mori, K. Kobayashi, N. Kumar, S. Chu, S. Shen, G. Lai, D. Diehl, and M. Yoneda, "Improvement in reliability of Cu dual-damascene interconnects using Cu-Al alloy seed", Advanced Metallization Conference (AMC), (2005).
    26. C. W. Chen, J. S. Chen, and J. S. Jeng, "Characteristics of Thermally Robust 5 nm Ru-C Diffusion Barrier/Cu Seed Layer in Cu Metallization", Journal of the Electrochemical Society, 156, (2009), pp.H724-H728.
    27. J. C. Rivière and S. Myhra, "Handbook of surface and interface analysis: methods for problem-solving". Marcel Dekker, New York, (1998).
    28. M. Hansen, F. A. Shunk, R. P. Elliott, and Research Institute., "Constitution of binary alloys", 2nd ed., McGraw-Hill, New York, (1958).
    29. M. Ohring, "Materials science of thin films: deposition and structure", 2nd ed., Academic Press, San Diego, CA, (2002).
    30. P. Majumder, R. Katamreddy, and C. Takoudis, "Atomic Layer Deposited Ultrathin HfO2 and Al2O3 Films as Diffusion Barriers in Copper Interconnects", Electrochemical and Solid-State Letters, 10, (2007), pp.H291-H295.
    31. H. Bubert and H. Jenett, "Surface and thin film analysis: a compendium of principles, instrumentation, applications". Wiley-VCH, Weinheim, (2002).
    32. J. F. Watts and J. Wolstenholme, "An introduction to surface analysis by XPS and AES". J. Wiley, Chichester, West Sussex ; New York, NY, (2003).
    33. T. Fukuda, H. Nishino, and H. Yanazawa, "Analysis of leakage current of low-k materials for use as interlayer dielectric", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43, (2004), pp.86-90.
    34. S. Yu, T. K. S. Wong, X. Hu, and J. Wei, "A study on Cu diffusion to sol-gel derived low-k films", Microelectronic Engineering, 77, (2005), pp.14-20.

    無法下載圖示 校內:2012-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE