| 研究生: |
朱延祥 Zhu, Yan-xiang |
|---|---|
| 論文名稱: |
攪拌摩擦製程入熱參數之選定 The Choice on Friction Stir Processing Heat Input Parameter |
| 指導教授: |
林忠宏
Lin, Chung-hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 金相觀察 、固相接合 、入熱量 、攪拌摩擦製程 |
| 外文關鍵詞: | friction stir processing, heat input, solid state joining, metallography |
| 相關次數: | 點閱:140 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用和攪拌摩擦銲接(FSW)原理相同的攪拌摩擦製程(FSP)來進行研究,所謂入熱條件指的是製程時的轉速及銲速,本研究以相同轉速和不同銲速的條件來觀察鋁合金5083板材的機械性能表現以及金相組織和殘留應力分佈,使用FEM模擬製程時的溫度是否可以達到適當的製程溫度,並實際量測溫度場來驗證模擬的正確性。
經觀察及量測統整後,發現FSP在攪拌頭附近的暫態溫度分佈與轉速和塑性流動有關;而塑性流動大小則和板材溫度變化的速度有關,在塑性流動大(銲速較慢)時可以得到較佳的銲接品質,而由轉速產生的良好製程溫度應介於一次和二次再結晶溫度之間。在往後進行FSW時可以使用FEM法將實際的攪拌頭模型建立,計算出適當施予轉速的範圍,而在本文中的使用的材料和攪拌頭結果顯示在適當的轉速下,銲速(mm/min)與轉速(rpm)比不宜大於0.43。
研究流程可分為四個步驟:
(1) 決定攪拌摩擦製程各參數,包括攪拌頭形狀、板材規格、進刀量、傾斜角、轉速及銲速。
(2) 測量製程中下壓力、溫度分佈及製程後板材殘留應力並觀察金相組織。
(3) 對製程後板材進行靜態拉伸試驗以及疲勞裂縫進展試驗評估。
(4) 以FEM模擬板材在不同入熱條件時的溫度分佈和各測量數據做統整並預估最佳入熱條件。
This article is based on the Friction Stir Processing (FSP) which have the same principle as Friction Stir Welding (FSW) theory to make a research. The idea of Heat Input Condition means the rotational speed and weld speed during the processing experiment. So the article used the same rotational speed but the different weld speeds to observe mechanical property, metallographic organization and residual stresses distribution on the aluminum 5083 alloy materials. To see if the temperature could reach the appropriate processing temperature when using Finite Element Method (FEM) and to real measure temperature field for test the imitative testing accuracy.
After observing and measuring, it found that near by Friction Stir Processing (FSP) rotating tool transient temperature distribution and rotational speed have relations with plastic flow, otherwise the plastic flow’s proportion connect with temperature changing speed of aluminum alloys. The bigger (slower weld speed) in plastic flow, the better quality you can get. A good processing temperature which produces from rotational speed should situated between first and second times recrystallization temperature. In the future to do Friction Stir Welding (FSW) can use Finite Element Method (FEM) to build up reality weld head model and count appropriate rotational speed range. The result show that below the appropriate rotational speed, the weld speed (mm/min) divide by rotational speed should not over than 0.43.
Research process can be separate by four parts:
1. Decided Friction Stir Processing (FSP) processes parameters, included the shape of welding head, specification of aluminum alloy plate material, feed rate, inclination angle, rotational speed, and weld speed.
2. To measure pressure during processing, temperature distribution, residual stresses distribution on the aluminum alloy material, and to observe metallographic organization.
3. To evaluate the aluminum alloy plate material after texting by Tension Testing and fatigue crack.
4. Use Finite Element Method (FEM) to imitate different temperature, thermal stress distribution and measure date in heat input then not only make a rational connection but also estimate the best heat input condition.
[1] 符道, Application view of Friction Stir Welding on shipbuilding, 熱加工藝, No.11, p 48-49, 2005.
[2] W.M.Tomas, E.D.Nicholas, J.C.Needham,M.G.Murch, P. Temolesmith, J.C.Dawes, G.B.Application No.9125978.8,Dec.1991.
[3] Rajiv S.Mishra,”Friction stir processing technologies”,Advanced Materials and Processes, pp.43-46, 2003.
[4] R.S.Mishra, Z.Y.Ma, Friction stir welding and peocessing, Material Science and Engineering, R50, pp.1-78, 2005.
[5] W.M Thomas, E.D.Nicholas, J.C.Needham,”Friction Stir Welding for The Taansportation Industries”Materiala & Design, Vol.18, pp.269-273, 1997.
[6] Joel j D. The Friction Stir Welding advantage [J]. Welding Journal, 80(5):pp 269-273, 2001.
[7] Dawes C J, Thomas W M. Friction stir process welds Al alloys [J].Welding Journal, 75(3), pp.41-45, 1996.
[8] R Johnson and P L Threadgill, Progress in friction stir welding of aluminium and steel for marine applications, Advanced Marine Materials:Technolog and Applications.Octorber 2003
[9] 劉會杰, 陳迎春 ,馮吉才. 中國攪拌摩擦技術的研究[J]. 焊接,2004,(12),p.5.
[10] Kumagai M and Tanaka S: ’Properties of aluminium wide panels by friction stir welding’.Proc first International Friction Stir Welding Symposium, Thousand Oaks CA, USA, June 1999.
[11] Zhou C Z, Yang X Q, Luan G H. Fatique properties of FSW in Al 5083 alloy[J], Scr Mater,2005, 53, pp.1187.
[12] Hafley RA,DOmack MS, Wagner FA. Fatique crack growth rate behavior of AL-Li alloy 2195 plate and weldments. AeroMat’98, Tysons Corner, VA,18 June, 1998.
[13] James M, Mahoney M, Waldron D.Residual strees measurements in FSW aluminum alloys. In: Proceedings of the First International Symposium on FSW, Rockwell International Science Center, June 1999.
[14] Bucci RJ.Effect of residuel stress on fatigue crack growth rate measurements.In: Fracture Mechanics: Thirteenth Conference. West Conshohocken, PA: American Society for testing and Materials; 1981.p.28-47(ASTM STP 743)
[15] Link LR. Fatique crack growth of weldments. In: Mchenry KI, Potter JM, editiors. Fatique and fracture testing of weldments. West Conshohocken, PA: American Society for testing and Materials; 1990.p. 16-33(ASTM STP 1058)
[16] Jata KV, Sankaran KK, Ruschau JJ. Metall Mater Trans 200; 31A(September):2181-92.
[17] Biallas G, Donne C, Mechanical properties and corrosion behavior of FSW’s 2024 T3. In: First International Symposium on FSW. June 1999, Thousand Oaks(CA).
[18] Bussu G, Irving PE, Fatique performance of FSW’s 2024-T351 al alloys, First International Symposium on FSW. 14-16 June 1999, Thousand Oaks(CA).
[19] Aluminium Federation, The properties of Aluminium and its alloys, Alfed; 1983.
[20] ASTM,” Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain –Gage Method “, pp. 715-720, 1989.
[21] Chao Y J, Shu liu. Temperature, force, and power in FSW[J]. Advanced materials and processes, 2003, (5):44-45
[22] Frigaars O.A process model for friction stir welding of age hardening aluminum alloys[J]. Metallurgical and Materials Transactions, 2001, 32A(5):1189-1190.
[23] Khandker M Z H, Khan J A, Reynolds A P. prediction of temperature distribution and thermal history during FSW: input torque based model [J]. Science and Technology of welding and joining, 2003,8(3):165-174.
[24] Song M, Kovacevic R. Thermal modeling of FSW in a moving coordinate system and its validation[J]. International Journal of Machine Tools and Manufacture, 2003, 43(13):1319-1326.
[25] Song M, kovacevic R. Thermal modeling of FSW in a moving coordinate system and its validation[J], International fournal tools and manufacture, 2003, 43(6);605-615.
[26] Song M, kovacevicR.A. new heat transfer model for FSW[J]. Technical paper society of Manufacturing Engineers. MS, London, nMS02-175, 2000.
[27] Song M, Numerical and experimental study of the heat transfer process in FSW[J], Journal of Engineering, 2003,217(1);73-85.
[28] Colegrove P.Three dimensional flow and thermal modeling of the FSW process[A]. Proceedings of the second International Symposium on FSW[C]. Stockholms. Sweden, 2000.
[29] Thomas W M, ‘Friction stir welding and related friction process characteristics’. Proceedings. INALCO, Cambridge, 16 April 1998.
[30] Thomas W M, Andrews R E, ‘High performance tools for friction stir welding (FSW)’, International Patent Application WO 99/52669.
[31] 林春億, “摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質之影響”, 國立成功大學材料科學及工程學系碩士論文,2006.
[32] L. F. Mondolfo, “Aluminum Alloys Structure & Properties”, Chapter 4-3, pp. 806-842, 1976.
[33] I. J. Polmear “Light Alloys Metallurgy of the Light Metals”, pp. 15-123, 1980.
[34] John E. Hatch, “Aluminum Properties and Physical Metallurgy”, Chap9, pp. 356-367, 1985.
[35] Taylor Lyman, Howard E. Boyer, “Metallography, Structure and Phase Diagrams”, Metals Handbook, Vol. 8, pp. 251-434, 1973.
[36] ASTM,” Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain-Gage Method “, pp.715-720,1989.
[37] 胡永祥,” 利用低速鑽孔法對304L不鏽鋼銲接件殘留應力之檢測評估 “,成功大學機械工程研究所,碩士論文,1993.
[38] Timoshenko , S . P . and Goodier , J . N . ,” Theory of Elasticity “ , 3rd.Ed.McGraw-Hill Inc.,Taiwan,1986
[39] Schajer, G.S,” Application of Finite Element Calculations to Residual Stress Measurements “ , Journal of Engineering Materials and Technology , Vol.103 ,pp.157-163, A pril , 1981 .
[40] Elber , “Fatigue Crack closure under cyclic tension” , ASTM STP486 , American Socity for Testing and Material , hiladelphia , pp.230-241.
[41] C. H. Lin , S. H. Her , H. K. Lin , “Stress Concentration Effect on the Growth Rate of Embedded Fatigue Crack of Welded Joints” , TEAM’98 Kanazaewa , Japan , 6-9 , July , (1998).
[42] Paris , P.C. , Gomez , M. P. and Anderson . W. E. ,A rational analytic theory of fatigue . The Trend in Engineering . 13 (1961) pp. 9-14.
[43] P. C. Paris and F. Erdogan , “A Critical analysis of Crack Propagation Laws” , Trans. ASME. Res. D , pp.528 , 1963.
[44] J. S. Vetrano, C. A. Lavender, C. H. Hamilton, M. T. Smith and S.M. Bruemmer, “Superplastic Behavior in a Commerial 5083 Aluminium alloy”, Scripta Metallurgica et Meterialia, Vol. 30, 1994, pp565-570.
[45] 呂佳勳, “未再結晶處理對5083鋁合金加壓接合之研究”, 國立中央大學機械工程研究所碩士論文,1999.
[46] 李武奇, “攪拌摩擦銲接(FSW)前進邊雨後退邊疲勞性能之分析”, 國立成功大學系統及船舶機電工程研究所碩士論文,2007.