簡易檢索 / 詳目顯示

研究生: 顧晁語
Ku, Chao-Yu
論文名稱: 砂漿性質對於應用滑動式基礎結構之耐震性能影響評估
The effects of the mortar property on the seismic performance of the structure with sliding base system
指導教授: 鍾育霖
Chung, Yu-Lin
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 摩擦係數抗壓強度細度模數砂漿鑄鐵滑動式基礎振動臺實驗
外文關鍵詞: Friction Coefficient, Compressive Strength, Fineness Modulus, Mortar, Cast-iron, Sliding Base, Shaking Table Test
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位於環太平洋地震帶上,地震是工程上的一大挑戰。中低樓層鋼筋混凝土造住商混合住宅是台灣常見的建築形式,大多會將底層作為通透度較高之寬敞空間使用,使剛度較鄰層弱甚至形成軟弱底層。為了使結構能保有原有空間使用性並且提升耐震能力,採用隔震工法是一個較為可行的方式,但傳統隔震系統造價較高,數量上佔大多數的一半中低樓層建築難以負擔,因此本研究探討使用成本較低之滑動式基礎耐震性能。滑動式基礎可藉由控制摩擦係數,使在中小度地震以結構本身性能抵抗地震,在大型地震中發生滑動避免結構嚴重損傷。以往實驗中有將鑄鐵與砂漿作為滑動基礎的界面材料,並且證實滑動式基礎能有效提升結構耐震能力。本研究以此為基礎探討採用不同種類砂漿以及滑動式基礎之結構物在降低摩擦係數後對於上部結構的影響。
    研究先以靜態摩擦實驗來測試如何控制摩擦係數並選定一種合適的砂漿作為振動台實驗所用,爾後以振動台實驗測試降低摩擦係數後對於上部結構之耐震性能以及動態行為之影響。
    靜態摩擦實驗設計了六種不同抗壓強度與細度模數之砂漿與鑄鐵(FC250)進行摩擦實驗。從這六種組合中發現,提升砂漿抗壓強度有降低摩擦係數之趨勢,改變細度模數也稍微有降低摩擦係數之趨勢,但影響程度不及改變抗壓強度明顯,最終選定抗壓強度為400 kgf/cm2、細度模數為2.2、μs=0.21、μk=0.17之砂漿作為振動台實驗所用。
    振動台實驗重點結論如下:
    1.經多次摩擦後,摩擦係數有逐漸升高之趨勢,可能與摩擦表面損傷有關。
    2.振動台實驗測出之摩擦係數約為0.3,相較於2018年實驗之0.4,本次實驗之摩擦係數較低,在50%加載強度中滑移量相較於2018實驗增加了約3倍,在100%加載強度中無明顯差異。
    3.在二維輸入波(僅水平兩向加載)之加載歷程中依然有擺動之行為產生,整體動態行為與結構反應和三維輸入波十分接近。
    4.測得加速度峰值與樓板相對變位峰值均以擺動所主導,又擺動可能與共振有關,導致本次實驗與2018年實驗無明顯差異。觀察未發生擺動且加載強度最大的時刻點,增強加載強度有降低更多上部結構加速度的趨勢;觀察樓板相對變形也可發現提升加載強度對於樓板相對變形並無明顯影響。從以上幾點均顯示滑動式基礎在未發生擺動的情況中有非常顯著之效果。

    This research conducted an experimental study to evaluate the seismic performence of the structure with sliding base system. Various contents of the mortars were adopted to exam the effects on friction coefficient. The sliding base system adopts cast-iron and mortar at the interface. The static friction test showed that increased the compressive strength of mortar tended to decrease the friction coefficient, also decreasing the fineness modulus has the same tendency but it’s not as obvious as increasing compressive strength. In addition, one of the mortar specimen, whose compressive strength was 400 kgf/cm2 ,fineness modulus was 2.2,exhibited the static friction coefficient of about 0.21 and the kinetic friction coefficient of about 0.17. The specimen was selected for the shaking table experiment.
    Shaking table experiments indicated that the dynamic friction coefficient was approximated 0.3. Even though the dynamic friction reduced from 0.4 to 0.3, collisions still occurred and broke the surface of mortar. In this condition, most structural responses were similar to the previous experiment which adopted the sliding base system with higher friction coefficient, only the sliding distance increased about 3 times in the 50% input intensity. Furthermore, the measured acceleration peak and floors relative displacement peak were both are the seismic performance indicators which dominated by collisions, and the collisions may be related to resonance of the structure and the input wave, result in there was no significant difference between this experiment and previous experiment.

    摘要 I Extended Abstract III 誌謝 XVI 目錄 XVII 圖目錄 XIX 表目錄 XXI 符號 XXII 第 1 章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 1.2.1 滑動式基礎發展相關研究 3 1.2.2 各種材料摩擦試驗相關研究 4 1.2.3 鑄鐵與砂漿介面摩擦行為研究 7 1.2.4 混凝土強度與硬度相關研究 15 1.3 研究方法 16 1.4 研究內容 17 第 2 章 砂漿與鑄鐵靜態摩擦實驗 18 2.1 實驗規劃 18 2.2 實驗結果 21 2.3 小結 25 第 3 章 實尺寸鋼結構振動台實驗-實驗規劃設計 26 3.1 實驗規劃 26 3.1.1 試體規劃與尺寸 26 3.1.2 實驗裝置 29 3.1.3 感測器配置 30 3.1.4 輸入波與加載歷程 31 第 4 章 實尺寸鋼結構振動台實驗結果 34 4.1 滑動基礎行為探討 34 4.1.1 試體狀態觀察 34 4.1.2 基礎水平位移與扭轉 36 4.1.3 質心與柱腳抬升 40 4.2 整體動態行為 44 4.2.1 動態行為與歷時反應 44 4.2.2 動態行為累積歷時 47 4.3 摩擦係數 49 4.3.1 摩擦係數分析方法 49 4.3.2 摩擦係數與滑動位移關係 50 4.3.3 摩擦係數與滑動速度關係 53 4.4 結構物反應 56 4.4.1 樓板加速度 56 4.4.2 樓板相對變位 60 4.4.3 樓板相對變位歷時 64 4.4.4 結構物綜合反應歷時 66 4.5 小結 69 第 5 章 結論與建議 70 5.1 結論 70 5.2 建議 71 參考文獻 72

    中央氣象局 地震測報中心,『臺灣的地震頻率如何?』:https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/55,臺灣。(最後瀏覽:2020年7月1日)
    Tsai, K. C., Hsiao, C. P., & Bruneau, M.," Overview of Building Damages in 921 Chi-Chi Earthquake," Earthquake Engineering and Engineering Seismology , vol. 2, no. 1, 93-108, 2000.
    邱聰智,黃李暉,翁樸文,何郁姍,王上康,黃世建,鍾立來,葉錦勳,”2016美濃地震玉井區建築物普查暨震損建物資料庫”,國家地震工程研究中心,NCREE-18-003,台北,2018。
    饒瑞鈞,”2016年高雄美濃地震-震後科學調查”,中華民國 科技部,2017。
    Arya, A. S., "Sliding concept for mitigation of earthquake disaster to masonry buildings." Proceedings of 8th world conference on earthquake engineering. San Francisco., vol. 5, pp. 951-958, 1984.
    Li, L.," Base isolation measure for aseismic buildings in China," Proceedings of 8th world conference on earthquake engineering. San Francisco, Calif., vol. 6, pp. 791-798, 1984.
    Zhang, P., Nagae, T., McCormick, J., Ikenaga, M., Katsuo, M., & Nakashima, M.," FRICTION-BASED SLIDING BETWEEN STEEL AND STEEL, STEEL AND CONCRETE, AND WOOD AND STONE," Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.,pp. 12-17., 2008.
    Enokida, R., Nagae, T., Ikenaga, M., Inami, M., & Nakashima, M., "Application of Graphite Lubrication for Column Base in Free Standing Steel Strure," Journal of Structural and Construction Engineering. AIJ, vol. 78, no. 685, pp. 435-444, 2013.
    Enokida, R., & Nagae, T., "Seismic Damage Reduction of a Structural System based on Nontraditional Sliding Interfaces with Graphite Lubrication," Journal of Earthquake Engineering., vol. 22, no. 4, pp. 666-686, 2018.
    Kajiwara, K., Tosauchi, Y., Sato, E., Fukuyama, K., T. Inoue, H. Shiohara, T. Kasbeyasawa, T. Nagae, H. Fukuyama, T. Kabeyasawa, and T. Mukai, "2015 Three- dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense; Part 1: Overview and Specimen Design of the Base Slip and Base Fixed Tests," 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4012, 2017.
    Sato, E., Tosauchi, Y., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., "2015 Three- dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense; Part 2: Specimen Fabrication and Construction, Test Procedure, and Instrumentation Program," 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4007, 2017.
    Tosauchi, Y., Sato, E., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., "2015 Three- dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense; Part 3: Base Slip and Base Fixed Test Results," 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4016, 2017.
    Tosauchi, Y., Sato, E., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., "THREE- DIMENSIONAL SHAKING TABLE TEST OF A TEN-STORY RC FRAME (2015) Test methods and the responses in case of sliding bases," J. Struct. Constr. Eng., AIJ, vol. 83, no. 750, pp. 1139-1149, 2018.
    郭冠廷,應用滑動式基礎之結構耐震行為研究,國立成功大學建築研究所碩士論文,2019。
    Naeim, F., & Kelly, J. M., Design of seismic isolated structures: from theory to practice. New York: John Wiley & Sons, 1999.
    Calantarients, J. A., Building construction to resist the action of earthquakes., Washington, DC: U.S. Patent and Trademark Office Patent No 932,443, 1909.
    沈永年,混凝土版抗壓強度與反彈錘數之關係研究,高雄應用科技大學學報 第37期,2010。

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE