| 研究生: |
趙怡茹 Chao, Yi-ru |
|---|---|
| 論文名稱: |
探討代數Riccati方程的數值解 A Survey on Numerical Solutions for Algebraic Riccati Equations |
| 指導教授: |
王辰樹
Wang, Chern-shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 牛頓法 、代數 、方程 、數值 |
| 外文關鍵詞: | numerical solution, Matrix sign function method, CARE, DARE, SDA, Schur method, Riccati, Newton's method |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
做這篇論文的目的是想了解近十年來學者們對於解 Algebraic Riccati Equations 的數值方法有哪些。原因是由控制系統中的問題可以轉換成 Algebraic Riccati Equations 求解,因此才會衍生出整理" 解 Algebraic Riccati Equations 的方法" 這個念頭。
然而方法有很多種,不可能一一盡知。所以在此篇論文中只列出四個比較重要的方法: Newton's Method、 Schur Method、 Matrix Sign Function Method 和 SDA Method。
解 Algebraic Riccati Equations(不管是CARE還是DARE) 其實可以將其看成函數解其根,只是去解矩陣多項式的根,因此很直接的會想到用牛頓法解 Algebraic Riccati Equations。但是在矩陣中很難定義矩陣的微分(雖然有定義),因此會用迭代的觀念導出求根的迭代式,而迭代也不一定要往同一個方向迭代,因此有了往不同方向迭代的方法 -- Line Search。若不從解根的這個方向看的話, Algebraic Riccati Equations 可以轉換成一個 Hamiltonian matrix,而解 Algebraic Riccati Equations 就相當於去求 Hamiltonian matrix 的不變子空間,因此列舉了 Schur Method 和 Matrix Sign Function Method 這兩種方法來說明。至於 SDA Method 是利用保持矩陣結構的不變性去找到三個遞迴式,而且其中一項的收斂值是 Algebraic Riccati Equations 的解,但是其收斂性要在某些條件下才會成立,這些都在 SDA Method 那一部份會提到。
In the last decades, a number of numerical methods for solving algebraic Riccati equations are proposed. According to that the kernel of the optimal control problems is used to be the stabilizing solutions of corresponding AREs, the thesis hence aims to survey several popular numerical methods for solving AREs, for
instance, Newton's method, matrix sign function method, Schur method and SDA method.
[1] Peter Benner, ”Accelerating Newton’s Method for
Discrete-Time Algebraic Riccati Equations”, copided from
http://citeseer.ist.psu.edu/benner98accelerating.html
[2] Peter Benner and Ralph Byers, ”An Exact Line Search Method for Solving
Generalized Continuous-Time Algebraic Riccati Equations”, IEEE
Transactions on automatic control, vol 43, No 1, January 1998.
[3] Ralph Byers, ”Solving the Algebraic Riccati Equation with the Matrix
Sign Function”, Linear Algebra and Its Applications, vol 85, 1987, page
267-279.
[4] Chun-Yueh Chiang and Wen-Wei Lin, ”A structured doubling algorithm
for nonsymmetric algebraic Riccati equations(a singular case)”, NCTS
Preprints 2006-7-001, National Tsing Hua University, Hsinchu, Taiwan,
2006.
[5] E. K.- W. Chu, H.-Y. Fan and W.-W. Lin, ”A structure-preserving doubling
algorithm for continuous-time Algebraic Riccati Equations”, Lin.
Alg. Appl, vol 396, 2005, page 55-80.
[6] E. K.-W. Chu, H. -Y. Fan, W. -W. Lin and C. -S. Wang, ”Structurepreserving
algorithms for periodic discrete-time algebraic Riccati equations”,
Int. J. Control, vol 77, No 8, 20 May 2004, page 767-788.
[7] Angelika Bunse-Gerstner, Ralph Byers, and Volker Mehrmann, ”Numerical
Methods for Algebraic Riccati Equations”, Appeared in Workshop on
The Riccati Equation in Control Systems and Signals, June 26-28, 1989,
Como Italy, Sergio Bittanti ed., Pitagora Editrice, Bologna, page 107-115.
[8] Chun-Hua Guo and Peter Lancaster, ”Analysis and Modification of Newton’s
Method for Algebraic Riccati equations”, American Mathematics of
Computation, vol 67, No 223, July 1998, page 1089-1105.
[9] Chun-Hua Guo, ”Newton’s Method for Discrete Algebraic Riccati Equations
when the Closed-Loop Matrix has Eigenvalues on the Unit Circle”,
SIAM J. Matrix Anal. Appl., vol 20, No 2, page 279-294.
[10] Chun-Hua Guo, ”Convergence analysis of the Latouche-Ramaswami algorithm
for null recurrent quasi-birth-death processes”, SIAM J. Matrix
Analy. Appl., vol 23, 2002, page 744-760.
[11] Golub and Van Loan, ”Matrix Computations”, 3rd ed.
[12] T.-M.Hwang, E.K.-W.Chu and W.-W.Lin, ”A generalized structurepreserving
doubling algorithm for generalized discrete-time Algebraic Riccati
Equations”, Internation Journal of Control, vol 78, No 14, 20 September
2005, page 1063-1075.
[13] Alan J. Laub, ”A Schur Method for Solving Algebraic Riccati Equations”,
IEEE Transactions on automatic control, vol 24, No 6, December 1979,
page 913-921.
[14] G. Latouche and V. Ramaswami, ”A logarithmic reduction algorithm for
quasi-birth-death processes”, J. Appl. Probab., vol 30, 1993, page 650-674
[15] L.-Z. Lu and W.-W. Lin, ”An Iterative Algorithm for the Solution of
the Discrete-Time Algebraic Riccati Equation”, Linear Algebra and Its
Applications 188-189, 1993, page 465-488.
[16] L.-Z. Lu, W.-W. Lin and C.E.M.Pearce, ”An Efficient Algorithm for the
Discrete-Time Algebraic Riccati Equation”, IEEE Transactions on automatic
control, vol 44, No 6, June 1999, page 1216-1220.
[17] Linzhang Lu and C. E. M. Pearce, ”On the Matrix-Sign-Function Method
for Solving Algebraic Riccati Equations”, Applied Mathematics and Computation
86, 1997, page 157-170.
[18] C. Paige and C. Van Loan, ”A Schur Decomposition for Hamiltonian
Matrices”, Linear Algebra and Its Applications, vol 41, 1981, page 11-32.
[19] Thrasyvoulos Pappas, Alan J. Laub, and Nils R. Sandell, ”On the Numerical
Solution of the Discrete- Time Algebraic Riccati Equation”, IEEE
Transactions on automatic control, vol 25, No 4, August 1980, page 631-
641.
[20] J. Potter, ”Matrix Quadratic Solutions”, SIAMJ. Appl. Math. vol 14,
1996, page 496-501.