| 研究生: |
閻祥宇 Yen, Hsiang-Yu |
|---|---|
| 論文名稱: |
以實驗設計探討超短脈衝雷射矽通孔之最佳矽材移除率 Maximizing Silicon Removal Rate for Through-Silicon-Via by using Ultrashort Laser and Experimental Design Approach |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 矽通孔 、實驗設計 、分子動力 、矽通孔移除率 |
| 外文關鍵詞: | Through-Silicon-Via, molecular dynamics, experimental design, silicon removal rate |
| 相關次數: | 點閱:141 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提升脈衝雷射矽穿孔之生產效率,以達到有效降低成本及提高產量之目的,本研究以實驗設計探討提升矽通孔矽材移除率最有佳解,並更進一步提出降低能耗與提高產率之方案,以下為詳述。
矽通孔成型的技術有化學蝕刻與脈衝雷射加工兩種類型,目前在業界採用蝕刻技術,主要原因在於蝕刻製程之效率較雷射加工高,但蝕刻有著機台昂貴、精度受限、汙染環境且對非金屬材料製程難以繼續突破,而脈衝雷射加工雖然的效率雖不及蝕刻,但產品精度高,也沒有上述的汙染及製程難以繼續突破的問題;故本文之目標即為如何在雷射脈衝較弱項矽材移除率作一有效之提升,以便在未來業界發展更精細孔洞時能有更廣的應用。
本研究以分子動力學配合實驗設計法設計出一套完整的實驗系統,並選擇七項因子作為變數,而後透過實驗本研究發現單一脈衝能量、脈衝頻率、通孔直徑及材料厚度等四項因子對系統有顯著的影響,且系統模型配適度達98.38%,代表此模型夠符合實際狀況。最後再透過調控貢獻度提出一套在能耗與在矽材移除率優化後之模型,而此模型在考量成本後發現,在同成本之情形下,有效的提高生產效率達18.7%。
This study is targeting on how to enhance the silicon drilling materials removal rate of Through-Silicon-Via (TSV) by using ultrashort laser and experimental design for the purpose to raise the production efficiency, and to lower the cost for a better silicon removal rate.
This work is to simulate the hole-drilling process by ultrashort laser using molecular dynamics modeling technique and experimental design. First, seven related variables are selected as associated factors and being tested. Four significant ones to the system are identified by fractional factorial design technique. Those include the laser energy per pulse, laser frequency, hole diameter, and the thickness of our silicon product. To further prove the accuracy of the model, exhaustive factorial design is then used to fit with the numerical experimental data and to get the model as well. The results obtained are found for up to 98.38% adequacy being suitable to the real data.
To build a better model on both higher silicon removal rate and lower energy consumption, the inverse Yates algorithm is then used for optional redesign. As compared to the results from laser pulse technique are found much better in process accuracy. By combining ultrashort laser pulse with experimental design technique, a good enhancement on the efficiency up to 18.7% increase are obtained. Although the molecular dynamics and numerical experimental data are relatively ideal, the results are found not to far away from the real processes with great satisfaction.
1. Momma, C., Nolte, S., Chichkov, B.N., Alvensleben, F.V., Tünnermann, A., “Precise laser ablation with ultrashort pulses”, Appl. Surf. Sci. 1997, 109, (110): pp. 15–19.
2. Furusawa, K., Takahashi, K., Kumagai, H., Midorikawa, K., Obara, M., “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti-sapphire laser”, Appl. Phys. A: Mater. Sci. Process, 1999,69S: pp. 359–366.
3. Nolte, S., Momma, C., Jacobs, H., Tünnermann, A., “Ablation of metals by ultrashort laser pulses”, J. Opt. Soc. Am. B, 1997, 14 (10): pp. 2716–2722.
4. Afanasiev, Y.V., Demchenko, N.N., Isakov, V.A., Zavestovskaia, I.N., Chichkov, B.N., “Threshold characteristics of short and ultrashort laser pulse ablation of metals”, Proc. of SPIE,2002, 4760: pp. 424–431.
5. Atanasov, P.A., Nedialkov, N.N., “Influence of the processing parameters on the ultrashort laser ablation of metals”, 2007.
6. Nedialkov, N., Imamova, S.E., Atanasov, P.A., Heusel, G., Breitling, D., Ruf, A., Hugel, H., Dausinger, F., Berger, P., “Laser ablation of iron by ultrashort laser pulses”, Thin Solid Films, 2004: pp. 453–454, 496–500.
7. Komashko, A.M., Feit, M.D., Rubenchik, A.M., Perry, A.M., Banks, A.M., “Simulation of material removal efficiency with ultrashort laser pulses”, Appl. Phys. A, 1999, 69 (1), S95–S98.
8. Vidal, F., Johnston, T.W., Laville, S., Barthélemy, O., Chaker, M.,
Le Drogoff, B., Margot, J., Sabsabi, M., “Critical-point phase separation in laser ablation of conductors”, Phys. "Rev. Lett.,2001 86 (12): pp. 2573–2576.
9. Chang, Gang, Tu, Yiliu, “An effective focusing setting in femtosecond laser multiple pulse ablation”, 2012.
10. Jiao, L., Ng, E. Y. K., Zheng, H., Wee, L. M., “Statical analysis of femtosecond pulses laser on hole drilling of silicon wafer”, 2011.
11.Ghoreishi, M., “Statistical analysis of repeatability in laser percussion drilling”. The International Journal of Advanced Manufacturing Technology, 2005. 29(1-2): pp. 70-78.
12. Rieske, R., Landgraf, R., Wolter, K.J., “Novel method for crystal defect analysis of laser drilled TSVs”, 2009.
13. Atanasov, P.A. and Nedialkov, N.N., “Influence of the processing parameters on the ultrashort laser ablation of metals”, 2006.
14. Döringa, S., Ullspergera, T., Heislera, F., Richtera, S., Tünnermanna, A., Noltea, S., “Hole formation process in ultrashort pulse laser percussion drilling”, 2013.
15. Wynne, A.E., Stuart, B.C., “Rate dependence of short-pulse laser ablation of metals in air and vacuum”, 2001.
16. David, J.H, Hee, K.P., “Femtosecond laser drilling of crystalline and multi-crystalline silicon for advanced solar cell fabrication”, Applied Physics A, 2012, 108: pp. 113-120.
17. Cleveland, C.L., Landman, U., and Barnett, R.N., “Molecular dynamics of a laser-annealing experiment”, Physical Review Letters, 1982. 49: pp. 790-793.
18. Hayase, M., Ritzdorf, T., Wu, B., “Electronics Packaging 3”, Vol. 16. 2009: The Electrochemical Society. pp. 41-42.
19. Atanasov, P.A., et al., “Laser ablation of Ni by ultrashort pulses: molecular dynamics simulation,” Appl. Surf. Sci., 2002, pp. 186, 369.
20. Jones, J.E., On the Determination of Molecular Fields. II. From the Equation of State of a Gas. Proceedings of the Royal Society of London, 1924. A: p. 463-477.
21. Tersoff, J., “New empirical approach for the structure and energy of covalent systems”, Physical Review B, 1988. 37.
22. Tersoff, J., “Empirical interatomic potential for silicon with improved elastic properties”, Physical Review B, 1988. 38.
23. Stillinger, F.H. and Weber, T.A., “Computer simulation of local order in condensed phases of silicon”, Physical Review B, 1985. 31(8): pp. 5262-5271.
24. Wang, X. and Xu, X., “Molecular Dynamics Simulation of Heat Transfer and Phase Chang During Laser Material Interaction,” Transactions of the ASME, Journal of Heat Transfer, 2002, 124: pp. 265-274.
25. Heino, P., Hakkinen, H., Kaski, K., “Molecular-Dynamics Study of Copper with Defects under Strain,” Phys. Rev. B, 1998, 58: pp. 641.
26. Herrmann, R.F.W., Gerlach, J., Campbell, E.E.B., “Ultrashort pulse laser ablation of silicon: an MD simulation study,”Appl. Phys. A, 1998, 66: pp. 35-42.
27. Schotz, J., Rasmussen, T., Jacobsen, K.W., Nielsen, O.H., “Mechanical Deformation of Nanocrystalline Materials,” Philosophical Magazine, 1996, 74: pp. 339.
28. Kotake, S., and Kuroki, M., “Molecular dynamics study of solid melting and vaporization by laser irradiation,” Int.J.Heat Ma ss Transfer, 1993, 36(8): pp. 2061-2067.
29. 沈威志、吳秉翰、郭靜男、鄭中緯,飛秒雷射微鑽孔製程技術 現況簡介,機械工業雜誌,335期,2011。
30. 藍偉誌、姚聖恩、鄭博任、余志成,攪拌方式與蝕刻幾何特徵對 KOH矽蝕刻蝕刻速率及表面粗糙度的影響,2004。
31. 吳政霖,雷射對陶瓷鑽孔的特性分析及預測模式之探討,屏東科技大學,2003。
校內:2019-12-25公開