簡易檢索 / 詳目顯示

研究生: 林育琪
Lin, Yu-Chi
論文名稱: 化學伴侶對持續性幼兒型胰島素過度分泌低血糖症之突變ATP敏感性鉀通道於細胞膜表現量的影響
Effects of chemical chaperone on surface expression of PHHI mutant KATP channel (SUR1/A28V Kir6.2)
指導教授: 陳珮君
Chen, Pei-Chun
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 50
中文關鍵詞: 卡馬西平KATP通道表面生物素化高爾基體
外文關鍵詞: carbamazepine, KATP channe, PHHI, A28VKir6.2, surface biotinylation, Golgi apparatus
相關次數: 點閱:75下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在胰臟β細胞中,ATP敏感鉀通道 (KATP) 由4個SUR1和4個Kir6.2亞基形成八聚體複合物,且受細胞內ATP與ADP的濃度所調控。 KATP通道的關閉誘導膜電位去極化,引起電位調控之鈣離子通道打開使鈣離子流入細胞內,繼而刺激胰島素分泌。 KATP通道功能的缺陷導致嬰兒持續性高胰島素血症性低血糖症(PHHI)。二氮嗪是PHHI患者的第一線治療方法。不幸的是,PHHI的新生兒形式中有90%對二氮嗪有抗藥性,而嚴重的PHHI患者通常需要進行部分胰腺切除手術。卡馬西平是一種抗癲癇藥,可糾正先天性高胰島素血症中SUR1突變引起的細胞膜表現量缺陷。 A28V是KCNJ11中的一種新型突變,其編碼Kir6.2亞基蛋白導致PHHI。 我們探討了卡馬西平和格列本脲是否可以挽救A28V Kir6.2突變造成的KATP 通道於細胞膜表現量的不足。用野生型(SUR1 / Kir6.2)或突變型(SUR1 / A28V Kir6.2)KATP通道轉染HEK293細胞,並且進行格列苯脲或卡馬西平處理。通過表面生物素化,格列本脲和卡馬西平增加了SUR1 / A28V Kir6.2轉染細胞中SUR1於細胞膜表達量。我們還用野生型或突變體Kir6.2在HEK293細胞中轉染了HA標記的SUR1。在格列本脲或卡馬西平處理後偵測了細胞膜表面HA的訊號,我們觀察到HA訊號在突變轉染細胞中免疫熒光染色增加。接下來,我們通過qPCR分析檢查了突變KATP通道是否增加了未折疊的蛋白應答(UPR),數據顯示卡馬西平對拯救突變KATP通道的影響不會影響參與UPR和SUR1的核糖核酸轉錄。同時,我們檢查了卡馬西平治療前後突變KATP通道的分佈。突變的KATP通道主要出現在高爾基體中。卡馬西平治療後,突變的KATP通道與高爾基體標記的共定位較少,並且通過進行免疫熒光染色在質膜上顯示出較強的訊號。免疫共沉澱結果也應證此現象。另外,我們也發現卡馬西平能減少突變KATP通道與溶體的共定位。我們亦檢視了卡馬西平如何調控溶體介導的自噬途徑,發現卡馬西平能啟動自噬反應但無法完成最後降解物質的步驟。總結來說,我們證明了卡馬西平處理透過協助突變KATP通道從高爾基體中拯救出來以及防止降解而使突變KATP通道運輸到細胞膜表面。

    In pancreatic β-cells, ATP sensitive potassium channel (KATP), the octamer complex containing 4 SUR1 and 4 Kir6.2 subunits, is gated by the cellular (Arakel et al.) and [ADP], and the closure of KATP channels induces membrane depolarization followed by Ca2+ influx through voltage-gated calcium channel, which in turn stimulates insulin secretion upon glucose elevation. The loss function of KATP channel results in persistent hyperinsulinemic hypoglycemia of infancy (PHHI). Diazoxide is the first line of treatment for patients with PHHI. Unfortunately, 90% of the neonatal forms of PHHI are resistant to diazoxide, and severe PHHI usually requires near-total pancreatectomy. Carbamazepine, an anti-epileptic drug, corrects the surface expression defects caused by a subset of SUR1 mutations in congenital hyperinsulinism. Importantly, the combination of diazoxide and carbamazepine led to enhanced mutant channel function. A28V is a novel mutation in KCNJ11 encodes Kir6.2 leads to PHHI. We investigated if carbamazepine and glibenclamide rescue forward trafficking deficit of A28V Kir6.2 mutation. HEK293 cells were transfected with either wildtype (SUR1/Kir6.2) or mutant (SUR1/A28V Kir6.2) KATP channels followed by glibenclamide or carbamazepine treatment. Carbamazepine increased total and surface expression of SUR1 in SUR1/A28V Kir6.2 transfected cells by surface biotinylation. We also transfected HA-tagged SUR1 with wildtype or mutant Kir6.2 in HEK293 cells, followed by surface HA staining after glibenclamide or carbamazepine treatment. We observed increased immunofluorescent staining in transfected mutant cells using an anti-HA antibody. Next, we checked if mutant KATP channels elevated the unfolded protein response (UPR) and the data showed that effects of carbamazepine on rescuing mutant KATP channels did not affect signaling molecules involved in the UPR and SUR1 using qPCR analysis. In the meantime, we examined the distribution of mutant KATP channels before and after carbamazepine treatment. Mutant KATP channels were presented mainly in the Golgi apparatus and lysosome. Upon carbamazepine treatment, mutant KATP channels showed less colocalization with the Golgi marker, GM130, and displayed intense staining in the plasma membrane by performing immunofluorescent staining; the co-IP results also correspond to the staining pattern. We also found that carbamazepine could reverse the colocalized pattern with lysome marker, LAMP1. For degradation system, western blotting data showed carbamazepine initiated autophagy through mTOR dependent pathway. Howerever, carbamazepine could not complete the autophagy flux. Collectively, we demonstrate that mutant KATP channels are rescued to the surface by carbamazepine treatment via assisting mutant KATP channels in exiting from GM130 and preventing lysosomal degradation.

    中文摘要 I Abstract III 致謝 V Contents VII Figure Contents IX Introduction 1 Pancreatic ATP-sensitive potassium channel (KATP) 1 Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) 6 Protein Quality Control (PQC) 7 Chaperone 10 Research rationales and hypothesis 12 Specific aims 12 Materials and methods 13 Chemicals 13 Antibodies 13 Cell Culture and transfection 14 Drug treatment 14 Immunocytochemistry examination 15 Surface immunofluorescence staining 15 Immunoprecipitation 16 mRNA expression analysis 16 Co-immunoprecipitation (co-IP) 17 Western blot 17 Surface biotinylation 18 Microscope examination 18 Softwares using in data analysis 18 Statistical analysis 18 Results 19 Discussion 25 Conclusion 30 Figure 32 References 46

    References

    Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocrine Reviews 20:101-135.
    Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M (2009) Molecular biology of K(ATP) channels and implications for health and disease. IUBMB life 61:971-978.
    Amaral MD (2004) CFTR and chaperones: processing and degradation. Journal of molecular neuroscience 23:41-48.
    Arakel EC, Brandenburg S, Uchida K, Zhang H, Lin Y-W, Kohl T, Schrul B, Sulkin MS, Efimov IR, Nichols CG, Lehnart SE, Schwappach B (2014) Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes. Journal of cell science 127:2106-2119.
    Araki K, Yagi N, Aoyama K, Choong C-J, Hayakawa H, Fujimura H, Nagai Y, Goto Y, Mochizuki H (2019) Parkinson's disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc Natl Acad Sci U S A 116:17963-17969.
    Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. Journal of Clinical Investigation 115:2047-2058.
    Ashcroft FM, Rorsman P (2013) K(ATP) channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology 9:660-669.
    Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. The Journal of Pathology221:117-124.
    Bexiga MG, Simpson JC (2013) Human diseases associated with form and function of the Golgi complex. International Journal of Molecular Sciences 14:18670-18681.
    Bieberich E (2014) Synthesis, Processing, and Function of N-glycans in N-glycoproteins. Advances in neurobiology 9:47-70.
    Bodas M, Vij N (2019) Adapting Proteostasis and Autophagy for Controlling the Pathogenesis of Cystic Fibrosis Lung Disease. Frontiers in Pharmacology 10:20-20.
    Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A (2019) The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. International Journal of Molecular Sciences 20:734.
    Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci U S A 98:2882-2887.
    Chen P-C, Olson EM, Zhou Q, Kryukova Y, Sampson HM, Thomas DY, Shyng S-L (2013) Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism. The Journal of biological chemistry 288:20942-20954.
    Díaz-Villanueva JF, Díaz-Molina R, García-González V (2015) Protein Folding and Mechanisms of Proteostasis. International Journal of Molecular Sciences 16:17193-17230.
    Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K (2017) Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. International Journal of Pediatric Endocrinology 2017:9-9.
    Dossou AS, Basu A (2019) The Emerging Roles of mTORC1 in Macromanaging Autophagy. Cancers (Basel) 11:1422.
    Gloyn AL, Siddiqui J, Ellard S (2006) Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Human Mutation 27:220-231.
    Goel P, Choudhury SR (2012) Persistent hyperinsulinemic hypoglycemia of infancy: An overview of current concepts. Journal of Indian Association of Pediatric Surgeons 17:99-103.
    Goldenberg MM (2010) Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. Physical Therapy 35:392-415.
    Hund TJ, Mohler PJ (2011) Differential roles for SUR subunits in KATP channel membrane targeting and regulation. American journal of physiology Heart and circulatory physiology 300:H33-H35.
    Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE (2018) Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. The Journal of biological chemistry 293:13682-13695.
    Issa AR, Sun J, Petitgas C, Mesquita A, Dulac A, Robin M, Mollereau B, Jenny A, Cherif-Zahar B, Birman S (2018) The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy 14:1898-1910.
    Kania E, Roest G, Vervliet T, Parys JB, Bultynck G (2017) IP(3) Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Frontiers in Oncology 7:140-140.
    Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. Journal of Clinical Investigation 110:1389-1398.
    Keranen T, Sivenius J (1983) Side effects of carbamazepine, valproate and clonazepam during long-term treatment of epilepsy. Acta neurologica Scandinavica Supplementum 97:69-80.
    Kocaturk NM, Gozuacik D (2018) Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Frontiers in Cell and Developmental Biology 6:128-128.
    Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. International Journal of Biochemistry and Molecular Biology 4:1-26.
    Lowe M (2019) The Physiological Functions of the Golgin Vesicle Tethering Proteins. Frontiers in Cell and Developmental Biology 7:94-94.
    Lynch ME, Watson CPN (2006) The pharmacotherapy of chronic pain: a review. Pain Research and Management 11:11-38.
    Martin GM, Chen P-C, Devaraneni P, Shyng S-L (2013) Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels. Frontiers in Physiology 4:386-386.
    Martin GM, Rex EA, Devaraneni P, Denton JS, Boodhansingh KE, DeLeon DD, Stanley CA, Shyng SL (2016a) Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations. The Journal of biological chemistry 291:21971-21983.
    Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng S-L (2019) Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. elife 8:e46417.
    Masia R, Caputa G, Nichols CG (2007) Regulation of KATP Channel Expression and Activity by the SUR1 Nucleotide Binding Fold 1. Channels 1:315-323.
    McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Molecular genetics and metabolism 104:648-653.
    McTaggart JS, Clark RH, Ashcroft FM (2010) The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. The Journal of physiology 588:3201-3209.
    Mehrtash AB, Hochstrasser M (2019) Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Seminars in Cell and Developmental Biology 93:111-124.
    Nakamura N (2010) Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. Journal of pharmacological sciences 112:255-264.
    Parys JB, Decuypere J-P, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal 10:17-17.
    Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460-473.
    Proks P, de Wet H, Ashcroft FM (2010) Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1. Journal of General Physiology 136:389-405.
    Quan Y, Barszczyk A, Feng Z-p, Sun H-s (2011) Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta pharmacologica Sinica 32:765-780.
    Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nature Reviews Nephrology 15:346-366.
    Roti EC, Myers CD, Ayers RA, Boatman DE, Delfosse SA, Chan EK, Ackerman MJ, January CT, Robertson GA (2002) Interaction with GM130 during HERG ion channel trafficking. Disruption by type 2 congenital long QT syndrome mutations. Human Ether-a-go-go-Related Gene. The Journal of biological chemistry 277:47779-47785.
    Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews Molecular Cell Biology 14:630-642.
    Schuit FC, Huypens P, Heimberg H, Pipeleers DG (2001) Glucose Sensing in Pancreatic β-Cells. Diabetes 50:1.
    Shiber A, Ravid T (2014) Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 4:704-724.
    Siwecka N, Rozpędek W, Pytel D, Wawrzynkiewicz A, Dziki A, Dziki Ł, Diehl JA, Majsterek I (2019) Dual role of Endoplasmic Reticulum Stress-Mediated Unfolded Protein Response Signaling Pathway in Carcinogenesis. International Journal of Molecular Sciences 20:4354.
    Taneja TK, Mankouri J, Karnik R, Kannan S, Smith AJ, Munsey T, Christesen HB, Beech DJ, Sivaprasadarao A (2009) Sar1-GTPase-dependent ER exit of KATP channels revealed by a mutation causing congenital hyperinsulinism. Human Molecular Genetics 18:2400-2413.
    Tsai YC, Weissman AM (2010) The Unfolded Protein Response, Degradation from Endoplasmic Reticulum and Cancer. Genes Cancer 1:764-778.
    Vajravelu ME, De León DD (2018) Genetic characteristics of patients with congenital hyperinsulinism. Current Opinion in Pediatrics 30:568-575.
    Webster JM, Darling AL, Uversky VN, Blair LJ (2019) Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Frontiers in Pharmacology 10:1047-1047.
    Wirfs L, Whitworth K, Kellar J (2017) Nystagmus Associated with Carbamazepine Toxicity. Clinical Practice and Cases in Emergency Medicine 1:441-442.
    Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL (2007) Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 56:2339-2348.
    Yang Y-Y, Long RK, Ferrara CT, Gitelman SE, German MS, Yang S-B (2017) A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels (Austin, Tex) 11:636-647.
    Zhang C, Miki T, Shibasaki T, Yokokura M, Saraya A, Seino S (2006) Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiological Genomics 24:290-297.
    Zhou Q, Chen P-C, Devaraneni PK, Martin GM, Olson EM, Shyng S-L (2014) Carbamazepine inhibits ATP-sensitive potassium channel activity by disrupting channel response to MgADP. Channels 8:376-382.
    Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC-K, Song J, Lu J, Cheung K-H, Li M (2019) Balancing mTOR Signaling and Autophagy in the Treatment of Parkinson's Disease. International Journal of Molecular Sciences 20:728.

    下載圖示 校內:2023-01-15公開
    校外:2023-01-15公開
    QR CODE