簡易檢索 / 詳目顯示

研究生: 賴正偉
Lai, Jeng-Wei
論文名稱: 運用多層毛囊細胞球來探討於毛髮新生過程的上皮與間質的交互作用
Multilayer hair sphere for epithelium-mesenchyme interaction during hair neogenesis
指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 真皮乳突脂肪幹細胞角質細胞甲殼素球體形成毛髮再生
外文關鍵詞: dermal papilla, adipose-derived stem cell, keratinocyte, chitosan, sphere formation, hair regeneration
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脫髮長久以來一直是個被高度關注的議題,而目前也發展出許多方式來試著解決之像是植髮、藥物治療、雷射治療等等。然而,上述結果仍由於毛囊的損失以及毛囊周邊細胞的不受控而有所限制。當談到毛髮再生,不只有具有毛髮誘導能力的真皮乳突細胞是必須的,以及上皮與間質的交互作用亦同樣重要。此外,由表皮角質細胞與真皮乳突細胞的參與所觸發的上皮與間質交互作用被認為於影響初始毛髮誘導階段中是不可缺少的。但是,當真皮乳突細胞於平面培養時會逐漸失去其特色能力。另外,脂肪幹細胞作為一能夠由皮下脂肪取得的理想細胞來源同時具有類似骨髓幹細胞的多能性與調節毛髮週期的能力。根據我們先前的研究,塗有甲殼素的培養盤具有提供一三維培養環境能使細胞於其培養下能形成細胞球體,而真皮乳突細胞的毛髮誘導能力能藉由此種三維培養方式來形成細胞球體以保持甚至加強。因此,本篇研究的目的在顯示如何藉由一三維共培養系統並適當模擬毛囊結構的方式將真皮乳突細胞、角質細胞與脂肪幹細胞結合創造一多層狀細胞球體進而促進真皮乳突細胞的毛髮誘導能力。其中真皮乳突細胞、角質細胞與脂肪幹細胞皆取自於C57BL/6小鼠。塗有甲殼素的96孔培養盤能夠提供獨立且合適的三維共培養以形成細胞球。為了評估最佳的層狀球體構造的接種順序,我們採用一致的細胞數量分別是每孔4x104顆真皮乳突細胞、2.5x104顆角質細胞與2.5x104顆脂肪幹細胞並且在六天內順序式接種三種細胞於塗有甲殼素的96孔培養盤內以形成不同的多層狀細胞球。從核心到最外層分別有三種,真皮乳突細胞/角質細胞/脂肪幹細胞、真皮乳突細胞/脂肪幹細胞/角質細胞與一混合外層,真皮乳突細胞/脂肪幹細胞加角質細胞。我們表明了此真皮乳突細胞/角質細胞/脂肪幹細胞順序的多層狀細胞球能夠將真皮乳突細胞的毛髮誘導能力表現提升地最為明顯。再者,當我們深入探討類似上皮與間質的角質細胞與真皮乳突細胞的交互作用,我們準備了培養過角質細胞或脂肪幹細胞的條件培養液療法,和由角質細胞或脂肪幹細胞包住真皮乳突細胞的雙層細胞球,作為不同搭配的比較。有趣的是,在雙層細胞球的物理接觸效果下真皮乳突細胞的毛髮誘導能力表現相較於在條件培養液療法下的化學傳遞效果是獲得提升的,說明了真皮乳突細胞與角質細胞的緊密接觸對於誘導真皮乳提細胞的特質是更有幫助的。除此之外,我們透過體內實驗亦發現此真皮乳突細胞/角質細胞/脂肪幹細胞順序的多層狀細胞球對於誘導毛髮再生是更有效且成功的。

    It has been attempted to cure hair loss by several different regimens, including hair transplantation, medication and laser treatment. However, the consequent is still limited as the loss of hair follicle (HF) and surrounding cells are not controllable yet. When it comes to HF regeneration, not only the hair-inductive capacities of dermal papilla (DP) are indispensable but the interaction of epithelium-mesenchyme is also necessarily required. Moreover, Epithelium-mesenchyme interaction triggered by the participation of epidermal keratinocytes (KCs) and DP cells is thought to be absolutely necessary when effecting the initial hair-inducing stage. But, DP cells tend to lose its characteristics when being cultured in adherent status. Additionally, adipose-derived stem cell (ASC) is an ideal cell source isolated from intradermal adipose tissue containing multi-potency as bone marrow mesenchymal stem cell and possesses the ability to regulate hair cycles. Based on our previous studies, chitosan-coated dishes are able to provide a 3D culture environment for cell culture to form cell spheres, and the hair-inductive capacity of DP cells could be maintained even enhanced via sphere formation by 3D culture. Therefore, the purpose of this study is to demonstrate how to facilitate the hair-inductive potentialities of DP cells via a 3D co-culture system with KCs and ASCs and create multi-layer cell spheres as an appropriate mimic of HF structure. C57BL/6 mice were used for mice DP cells, mice KCs, and mice ASCs isolations. Chitosan-coated 96 well plates were able to provide a sole and suitable 3D co-culture microenvironment for sphere formation. In order to evaluate the optimal seeding order for layer-by-layer sphere construction, we adopted the same cell density with 4x104 DP cells, 2.5x104 KCs and 2.5x104 ASCs per well and sequentially seeded three different types of cells into chitosan-coated 96 well plates to form diverse multi-layer cell spheres with different orders in 6 days. From the core to the outer layer were DP/KC/ASC sphere, DP/ASC/KC sphere, and a mixed outer layer was DP/ASC+KC sphere. We showed that the expression of hair-inductive DP markers in multi-layer spheres with this DP/KC/ASC arrangement were raised the most significantly. Furthermore, as we delved to explore the interaction between KCs and DP cells like epithelium versus mesenchyme, we prepared the culturing KCs or ASCs conditional treatments (CM), and two-layer spheres with DP cells surrounded by KCs or ASCs, to compare in different arrangements. Interestingly, the expression of hair-inductive DP markers under the physical contact effect of DP/KC sphere was promoted more in comparison with the chemical delivery effect from any CM, demonstrating that the close contact between DP cells and KCs was more beneficial in inducing DP cells features. Besides, We also found that DP/KC/ASC spheres among other heterotypic spheres were more effective and successful in inducing hair regeneration in vivo.

    Abstract I 中文摘要 III Content V Introduction 1 1.1 Hair Loss 1 1.2 Current therapies and treatments for hair loss 3 1.3 Cell therapy in hair restoration 5 1.4 The necessity of Dermal Papilla (DP) in hair regeneration 6 1.5 The role of Keratinocyte (KC) in hair development 8 1.6 Adipose-derived stem cell (ASC) 10 1.7 The importance of three-dimensional cell culture 13 1.8 Different methods of sphere formation 14 1.9 Biomaterial: Chitosan 16 1.10 Construction and morphogenesis of hair follicle (HF) 18 Objective 24 Specific aim 24 Materials and Methods 25 2.1 Cell isolation and cell culture 25 2.2 Fabrication of the chitosan-coated surface 27 2.3 Sphere formation 28 2.4 Conditional medium treatments 30 2.5 RNA isolation and reverse transcription-PCR 31 2.6 Samples embedding 33 2.7 Immunofluorescence Staining 34 2.8 Patch assay 36 2.9 Data quantification & analysis 37 Result 38 3.1 The protein and gene expression levels of DP markers were preserved by sphere formation 38 3.2 The protein expressions levels of DP markers were promoted by treating appropriate conditional medium 43 3.3 Multilayer spheres were engineered via the proper co-culture system 47 3.4 The protein expression of DP markers in different spheres 49 3.5 The importance of physical contact of ASC, KC on DPS 51 3.6 Facilitating hair regrowth by cell therapy in vivo 53 Discussion 59 Conclusion 67 References 68

    Alonso, L. and E. Fuchs (2006). "The hair cycle." J Cell Sci 119(Pt 3): 391-393.
    Amaral, I. F., P. Sampaio and M. A. Barbosa (2006). "Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation." J Biomed Mater Res A 76(2): 335-346.
    Antoni, D., H. Burckel, E. Josset and G. Noel (2015). "Three-dimensional cell culture: a breakthrough in vivo." Int J Mol Sci 16(3): 5517-5527.
    Avci, P., G. K. Gupta, J. Clark, N. Wikonkal and M. R. Hamblin (2014). "Low-level laser (light) therapy (LLLT) for treatment of hair loss." Lasers Surg Med 46(2): 144-151.
    Avigad Laron, E., E. Aamar and D. Enshell-Seijffers (2018). "The Mesenchymal Niche of the Hair Follicle Induces Regeneration by Releasing Primed Progenitors from Inhibitory Effects of Quiescent Stem Cells." Cell Rep 24(4): 909-921 e903.
    Avram, M. and N. Rogers (2009). "Contemporary hair transplantation." Dermatol Surg 35(11): 1705-1719.
    Banka, N., M. J. Bunagan and J. Shapiro (2013). "Pattern hair loss in men: diagnosis and medical treatment." Dermatol Clin 31(1): 129-140.
    Berger, J., M. Reist, J. M. Mayer, O. Felt and R. Gurny (2004). "Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications." Eur J Pharm Biopharm 57(1): 35-52.
    Breslin, S. and L. O'Driscoll (2013). "Three-dimensional cell culture: the missing link in drug discovery." Drug Discov Today 18(5-6): 240-249.
    Cai, S. J., C. W. Li, D. Weihs and G. J. Wang (2017). "Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities." Sci Technol Adv Mater 18(1): 987-996.
    Cawthorn, W. P., E. L. Scheller and O. A. MacDougald (2012). "Adipose tissue stem cells: the great WAT hope." Trends Endocrinol Metab 23(6): 270-277.
    Chellat, F., M. Tabrizian, S. Dumitriu, E. Chornet, P. Magny, C. H. Rivard and L. Yahia (2000). "In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex." J Biomed Mater Res 51(1): 107-116.
    Chellat, F., M. Tabrizian, S. Dumitriu, E. Chornet, C. H. Rivard and L. Yahia (2000). "Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media." J Biomed Mater Res 53(5): 592-599.
    Chen, Y. H., I. J. Wang and T. H. Young (2009). "Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes." Tissue Eng Part A 15(8): 2001-2013.
    Chu, X. H., X. L. Shi, Z. Q. Feng, Z. Z. Gu and Y. T. Ding (2009). "Chitosan nanofiber scaffold enhances hepatocyte adhesion and function." Biotechnol Lett 31(3): 347-352.
    Di-Poi, N., C. Y. Ng, N. S. Tan, Z. Yang, B. A. Hemmings, B. Desvergne, L. Michalik and W. Wahli (2005). "Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor beta/delta during hair follicle development." Mol Cell Biol 25(5): 1696-1712.
    Dong, L., H. Hao, J. Liu, C. Tong, D. Ti, D. Chen, L. Chen, M. Li, H. Liu, X. Fu and W. Han (2017). "Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system." J Tissue Eng Regen Med 11(5): 1479-1489.
    Dong, L., H. Hao, L. Xia, J. Liu, D. Ti, C. Tong, Q. Hou, Q. Han, Y. Zhao, H. Liu, X. Fu and W. Han (2014). "Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth." Sci Rep 4: 5432.
    Driskell, R. R., C. Clavel, M. Rendl and F. M. Watt (2011). "Hair follicle dermal papilla cells at a glance." J Cell Sci 124(Pt 8): 1179-1182.
    Edmondson, R., J. J. Broglie, A. F. Adcock and L. Yang (2014). "Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors." Assay Drug Dev Technol 12(4): 207-218.
    Eun, H. C., O. S. Kwon, J. H. Yeon, H. S. Shin, B. Y. Kim, B. I. Ro, H. K. Cho, W. Y. Sim, B. L. Lew, W. S. Lee, H. Y. Park, S. P. Hong and J. H. Ji (2010). "Efficacy, safety, and tolerability of dutasteride 0.5 mg once daily in male patients with male pattern hair loss: a randomized, double-blind, placebo-controlled, phase III study." J Am Acad Dermatol 63(2): 252-258.
    Fakhry, A., G. B. Schneider, R. Zaharias and S. Senel (2004). "Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts." Biomaterials 25(11): 2075-2079.
    Feng, Z. Q., X. Chu, N. P. Huang, T. Wang, Y. Wang, X. Shi, Y. Ding and Z. Z. Gu (2009). "The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function." Biomaterials 30(14): 2753-2763.
    Festa, E., J. Fretz, R. Berry, B. Schmidt, M. Rodeheffer, M. Horowitz and V. Horsley (2011). "Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling." Cell 146(5): 761-771.
    Frese, L., P. E. Dijkman and S. P. Hoerstrup (2016). "Adipose Tissue-Derived Stem Cells in Regenerative Medicine." Transfus Med Hemother 43(4): 268-274.
    Fuchs, E. (2007). "Scratching the surface of skin development." Nature 445(7130): 834-842.
    Fuchs, E. (2008). "Skin stem cells: rising to the surface." J Cell Biol 180(2): 273-284.
    Ghaffari, A., R. T. Kilani and A. Ghahary (2009). "Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts." J Invest Dermatol 129(2): 340-347.
    Gingras, M., I. Paradis and F. Berthod (2003). "Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice." Biomaterials 24(9): 1653-1661.
    Gonzales, K. A. U. and E. Fuchs (2017). "Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche." Dev Cell 43(4): 387-401.
    Goren, A., J. Shapiro, J. Roberts, J. McCoy, N. Desai, Z. Zarrab, A. Pietrzak and T. Lotti (2015). "Clinical utility and validity of minoxidil response testing in androgenetic alopecia." Dermatol Ther 28(1): 13-16.
    Greco, V., T. Chen, M. Rendl, M. Schober, H. A. Pasolli, N. Stokes, J. Dela Cruz-Racelis and E. Fuchs (2009). "A two-step mechanism for stem cell activation during hair regeneration." Cell Stem Cell 4(2): 155-169.
    Gupta, A. C., S. Chawla, A. Hegde, D. Singh, B. Bandyopadhyay, C. C. Lakshmanan, G. Kalsi and S. Ghosh (2018). "Establishment of an in vitro organoid model of dermal papilla of human hair follicle." J Cell Physiol 233(11): 9015-9030.
    Gupta, M., V. K. Mahajan, K. S. Mehta, P. S. Chauhan and R. Rawat (2015). "Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the 'future' in dermatology therapeutics?" Arch Dermatol Res 307(9): 767-780.
    Harries, M. J., K. C. Meyer, I. H. Chaudhry, C. E. Griffiths and R. Paus (2010). "Does collapse of immune privilege in the hair-follicle bulge play a role in the pathogenesis of primary cicatricial alopecia?" Clin Exp Dermatol 35(6): 637-644.
    Harries, M. J., J. Sun, R. Paus and L. E. King, Jr. (2010). "Management of alopecia areata." BMJ 341: c3671.
    Harrison, S. and R. Sinclair (2002). "Telogen effluvium." Clin Exp Dermatol 27(5): 389-385.
    Haycock, J. W. (2011). "3D cell culture: a review of current approaches and techniques." Methods Mol Biol 695: 1-15.
    Higgins, C. A., J. C. Chen, J. E. Cerise, C. A. Jahoda and A. M. Christiano (2013). "Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth." Proc Natl Acad Sci U S A 110(49): 19679-19688.
    Hoffman, R. M. (2000). "The hair follicle as a gene therapy target." Nat Biotechnol 18(1): 20-21.
    Howling, G. I., P. W. Dettmar, P. A. Goddard, F. C. Hampson, M. Dornish and E. J. Wood (2001). "The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro." Biomaterials 22(22): 2959-2966.
    Hsu, Y. C., L. Li and E. Fuchs (2014). "Emerging interactions between skin stem cells and their niches." Nat Med 20(8): 847-856.
    Hsueh, Y. Y., Y. L. Chiang, C. C. Wu and S. C. Lin (2012). "Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface." Cells Tissues Organs 196(2): 117-128.
    Huang, C. F., Y. J. Chang, Y. Y. Hsueh, C. W. Huang, D. H. Wang, T. C. Huang, Y. T. Wu, F. C. Su, M. Hughes, C. M. Chuong and C. C. Wu (2016). "Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction." Sci Rep 6: 26436.
    Huang, H., Q. Yuan and X. Yang (2004). "Preparation and characterization of metal-chitosan nanocomposites." Colloids Surf B Biointerfaces 39(1-2): 31-37.
    Huang, T. W., Y. H. Young, P. W. Cheng, Y. H. Chan and T. H. Young (2009). "Culture of nasal epithelial cells using chitosan-based membranes." Laryngoscope 119(10): 2066-2070.
    Huh, D., G. A. Hamilton and D. E. Ingber (2011). "From 3D cell culture to organs-on-chips." Trends Cell Biol 21(12): 745-754.
    Inoue, K., N. Aoi, Y. Yamauchi, T. Sato, H. Suga, H. Eto, H. Kato, Y. Tabata and K. Yoshimura (2009). "TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis." J Cell Mol Med 13(11-12): 4643-4656.
    Joshi, R. S. (2011). "The Inner Root Sheath and the Men Associated with it Eponymically." Int J Trichology 3(1): 57-62.
    Justice, B. A., N. A. Badr and R. A. Felder (2009). "3D cell culture opens new dimensions in cell-based assays." Drug Discov Today 14(1-2): 102-107.
    Kageyama, T., C. Yoshimura, D. Myasnikova, K. Kataoka, T. Nittami, S. Maruo and J. Fukuda (2018). "Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine." Biomaterials 154: 291-300.
    Katt, M. E., A. L. Placone, A. D. Wong, Z. S. Xu and P. C. Searson (2016). "In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform." Front Bioeng Biotechnol 4: 12.
    Kilani, R. T., L. Guilbert, X. Lin and A. Ghahary (2007). "Keratinocyte conditioned medium abrogates the modulatory effects of IGF-1 and TGF-beta1 on collagenase expression in dermal fibroblasts." Wound Repair Regen 15(2): 236-244.
    Kobielak, K., N. Stokes, J. de la Cruz, L. Polak and E. Fuchs (2007). "Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling." Proc Natl Acad Sci U S A 104(24): 10063-10068.
    Kong, M., X. G. Chen, K. Xing and H. J. Park (2010). "Antimicrobial properties of chitosan and mode of action: a state of the art review." Int J Food Microbiol 144(1): 51-63.
    Lee, J. and T. Tumbar (2012). "Hairy tale of signaling in hair follicle development and cycling." Semin Cell Dev Biol 23(8): 906-916.
    Li, F., C. A. Adase and L. J. Zhang (2017). "Isolation and Culture of Primary Mouse Keratinocytes from Neonatal and Adult Mouse Skin." J Vis Exp(125).
    Lin, B., Y. Miao, J. Wang, Z. Fan, L. Du, Y. Su, B. Liu, Z. Hu and M. Xing (2016). "Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration." ACS Appl Mater Interfaces 8(9): 5906-5916.
    Lv, D., Z. Hu, L. Lu, H. Lu and X. Xu (2017). "Three-dimensional cell culture: A powerful tool in tumor research and drug discovery." Oncol Lett 14(6): 6999-7010.
    Mahjour, S. B., F. Ghaffarpasand and H. Wang (2012). "Hair follicle regeneration in skin grafts: current concepts and future perspectives." Tissue Eng Part B Rev 18(1): 15-23.
    McElwee, K. J. and J. S. Shapiro (2012). "Promising therapies for treating and/or preventing androgenic alopecia." Skin Therapy Lett 17(6): 1-4.
    Mesler, A. L., N. A. Veniaminova, M. V. Lull and S. Y. Wong (2017). "Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors." Cell Rep 19(4): 809-821.
    Miao, Y., Y. B. Sun, B. C. Liu, J. D. Jiang and Z. Q. Hu (2014). "Controllable production of transplantable adult human high-passage dermal papilla spheroids using 3D matrigel culture." Tissue Eng Part A 20(17-18): 2329-2338.
    Mounsey, A. L. and S. W. Reed (2009). "Diagnosing and treating hair loss." Am Fam Physician 80(4): 356-362.
    Nilforoushzadeh, M., E. Rahimi Jameh, F. Jaffary, E. Abolhasani, G. Keshtmand, H. Zarkob, P. Mohammadi and N. Aghdami (2017). "Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice." Cell J 19(2): 259-268.
    Ohyama, M. (2007). "Hair follicle bulge: a fascinating reservoir of epithelial stem cells." J Dermatol Sci 46(2): 81-89.
    Olsen, E. A., M. Hordinsky, D. Whiting, D. Stough, S. Hobbs, M. L. Ellis, T. Wilson, R. S. Rittmaster and T. Dutasteride Alopecia Research (2006). "The importance of dual 5alpha-reductase inhibition in the treatment of male pattern hair loss: results of a randomized placebo-controlled study of dutasteride versus finasteride." J Am Acad Dermatol 55(6): 1014-1023.
    Olsen, E. A., A. G. Messenger, J. Shapiro, W. F. Bergfeld, M. K. Hordinsky, J. L. Roberts, D. Stough, K. Washenik and D. A. Whiting (2005). "Evaluation and treatment of male and female pattern hair loss." J Am Acad Dermatol 52(2): 301-311.
    Osada, A., T. Iwabuchi, J. Kishimoto, T. S. Hamazaki and H. Okochi (2007). "Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction." Tissue Eng 13(5): 975-982.
    Panteleyev, A. A., C. A. Jahoda and A. M. Christiano (2001). "Hair follicle predetermination." J Cell Sci 114(Pt 19): 3419-3431.
    Park, B. S., W. S. Kim, J. S. Choi, H. K. Kim, J. H. Won, F. Ohkubo and H. Fukuoka (2010). "Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion." Biomed Res 31(1): 27-34.
    Paus, R. and G. Cotsarelis (1999). "The biology of hair follicles." N Engl J Med 341(7): 491-497.
    Perera, E. and R. Sinclair (2017). "Treatment of chronic telogen effluvium with oral minoxidil: A retrospective study." F1000Res 6: 1650.
    Pikula, M., N. Marek-Trzonkowska, A. Wardowska, A. Renkielska and P. Trzonkowski (2013). "Adipose tissue-derived stem cells in clinical applications." Expert Opin Biol Ther 13(10): 1357-1370.
    Price, V. H. (1999). "Treatment of hair loss." N Engl J Med 341(13): 964-973.
    Ravi, M., V. Paramesh, S. R. Kaviya, E. Anuradha and F. D. Solomon (2015). "3D cell culture systems: advantages and applications." J Cell Physiol 230(1): 16-26.
    Rendl, M., L. Lewis and E. Fuchs (2005). "Molecular dissection of mesenchymal-epithelial interactions in the hair follicle." PLoS Biol 3(11): e331.
    Rogers, G. E. (2004). "Hair follicle differentiation and regulation." Int J Dev Biol 48(2-3): 163-170.
    Rogers, N. E. and M. R. Avram (2008). "Medical treatments for male and female pattern hair loss." J Am Acad Dermatol 59(4): 547-566; quiz 567-548.
    Schmidt-Ullrich, R. and R. Paus (2005). "Molecular principles of hair follicle induction and morphogenesis." Bioessays 27(3): 247-261.
    Schmidt, B. and V. Horsley (2012). "Unravelling hair follicle-adipocyte communication." Exp Dermatol 21(11): 827-830.
    Schneider, M. R., R. Schmidt-Ullrich and R. Paus (2009). "The hair follicle as a dynamic miniorgan." Curr Biol 19(3): R132-142.
    Schneider, R. K., S. Neuss, R. Stainforth, N. Laddach, M. Bovi, R. Knuechel and A. Perez-Bouza (2008). "Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function." Differentiation 76(2): 156-167.
    Sennett, R. and M. Rendl (2012). "Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling." Semin Cell Dev Biol 23(8): 917-927.
    Seo, C. H., M. H. Kwack, M. K. Kim, J. C. Kim and Y. K. Sung (2017). "Activin A-induced signalling controls hair follicle neogenesis." Exp Dermatol 26(2): 108-115.
    Shapiro, J. (2007). "Clinical practice. Hair loss in women." N Engl J Med 357(16): 1620-1630.
    Solanas, G. and S. A. Benitah (2013). "Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche." Nat Rev Mol Cell Biol 14(11): 737-748.
    Soma, T., S. Fujiwara, Y. Shirakata, K. Hashimoto and J. Kishimoto (2012). "Hair-inducing ability of human dermal papilla cells cultured under Wnt/beta-catenin signalling activation." Exp Dermatol 21(4): 307-309.
    Tran, N. Q., Y. K. Joung, E. Lih and K. D. Park (2011). "In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing." Biomacromolecules 12(8): 2872-2880.
    Tsuji, W., J. P. Rubin and K. G. Marra (2014). "Adipose-derived stem cells: Implications in tissue regeneration." World J Stem Cells 6(3): 312-321.
    Vidal, V. P., M. C. Chaboissier, S. Lutzkendorf, G. Cotsarelis, P. Mill, C. C. Hui, N. Ortonne, J. P. Ortonne and A. Schedl (2005). "Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment." Curr Biol 15(15): 1340-1351.
    Wang, X., X. Wang, J. Liu, T. Cai, L. Guo, S. Wang, J. Wang, Y. Cao, J. Ge, Y. Jiang, E. E. Tredget, M. Cao and Y. Wu (2016). "Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors." Stem Cells Transl Med 5(12): 1695-1706.
    Wang, X. H., D. P. Li, W. J. Wang, Q. L. Feng, F. Z. Cui, Y. X. Xu, X. H. Song and M. van der Werf (2003). "Crosslinked collagen/chitosan matrix for artificial livers." Biomaterials 24(19): 3213-3220.
    Yang, H., R. C. Adam, Y. Ge, Z. L. Hua and E. Fuchs (2017). "Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices." Cell 169(3): 483-496 e413.
    Zhao, Y. and H. Zhang (2016). "Update on the mechanisms of homing of adipose tissue-derived stem cells." Cytotherapy 18(7): 816-827.
    Zhou, D., H. Cheng, J. Liu and L. Zhang (2017). "Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor." Iran J Basic Med Sci 20(6): 662-675.
    Zhou, H., C. You, X. Wang, R. Jin, P. Wu, Q. Li and C. Han (2017). "The progress and challenges for dermal regeneration in tissue engineering." J Biomed Mater Res A 105(4): 1208-1218.
    Zwick, R. K., C. F. Guerrero-Juarez, V. Horsley and M. V. Plikus (2018). "Anatomical, Physiological, and Functional Diversity of Adipose Tissue." Cell Metab 27(1): 68-83.

    下載圖示 校內:2025-01-22公開
    校外:2025-01-22公開
    QR CODE