簡易檢索 / 詳目顯示

研究生: 方彥翔
Fang, Yen-Hsiang
論文名稱: 銅/錫-鋅共晶銲錫之電遷移行為
Electromigration of Sn-Zn solders in contact with Cu
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 124
中文關鍵詞: 熱效應電流密度電遷移錫鉛銲錫
外文關鍵詞: electromigration, current density
相關次數: 點閱:61下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究係探討銅/錫鋅系無鉛銲錫/銅組合在電流密度650A/cm2
    電遷移試驗下,其陰陽兩極界面及銲錫基地的反應情形。另也同時進行時效熱處理,以了解在通電流過程中焦爾效應(Joule effect)對電遷移反應之影響。錫鋅系無鉛銲錫包含了Sn-8.6Zn、Sn-4.5Zn、Sn-2.5Zn及Sn。
      經由掃描式電子顯微鏡(SEM)及電子微探儀(EPMA)分析經
    通電後的試片,在兩極界面處或在基地中所發現的介金屬化合物會因為鋅含量降低而生成不同介金屬化合物。在鋅含量較高的試片(Sn-8.6Zn)中,隨著通電時間的增加,在兩極界面處生成連續的Cu5Zn8,而陰極端的厚度則較陽極端厚且銅鍍層也消耗得較劇烈。當鋅含量降低時(Sn-4.5Zn),隨著通電時間的增加,並無連續層的出現,但在基地中所生成的介金屬化合物離陰極界面較遠。當錫鋅比例為Sn-2.5Zn時,不僅在基地中有銅鋅介金屬化合物,在界面處亦有銅錫介金屬化物的出現。當銲錫為純錫時,經216小時通電後,在基地及界面處即有銅錫化合物的產生。不同銲錫成份經時效熱處理後,僅在Sn-8.6Zn及Sn-4.5Zn界面處發現有銅鋅介金屬化合物,並無銅錫介金屬化合物的出現。
      在時效熱處理時,銅原子是經由晶界擴散與鋅反應形成介金屬
    化合物;在通電效應下,由於電場的作用使得原子可經由晶粒擴散。

      The electro-migration behavior of Cu/Sn-Zn series solder/Cu under a current density of 650A/cm2 was investigated in this work. Meanwhile, the role of thermo-migration was investigated by the thermo-aging experiment. The Sn-Zn series solders investigated include Sn-8.6Zn, Sn-4.5Zn, Sn-2.5Zn and Sn.
      The SEM and EPMA results obtained showed that, different compounds were formed on decreasing the zinc content of the solder. For high Zn content solder, Sn-8.6Zn, a continuous layer of Cu5Zn8 was observed and the copper layer of cathode side were consumed greatly after a current stressing for 456 hours. In the case of Sn-4.5Zn, Cu5Zn8 was further formed in the matrix near the cathode side. However, for the Sn-2.5Zn solder, Cu5Zn8 was found in the matrix and Cu6Sn5 was found at the interface. For pure Sn, Cu6Sn5 and Cu3Sn were found in the matrix and at the interface after a current stressing of 216 hours, respectively. Under the thermo-aging test, Cu5Zn8 was just found at the interface of Sn-8.6Zn and Sn-4.5Zn.
      Under the thermo-aging test, the copper diffused along the grain boundary to react with zinc. It can be observed that under the action of the electric field, the atoms diffused to react with zinc through the grain.

    總目錄 中文摘要................................................................................................ Ⅰ 英文摘要................................................................................................ .Ⅲ 總目錄.................................................................................................... Ⅳ 表目錄.................................................................................................... Ⅶ 圖目錄.................................................................................................... Ⅷ 第壹章、簡介 1-1覆晶接合技術與其應用…………………………………………..1 1-1-1 打線接合…………………………………...……………….2 1-1-2 捲帶式自動接合…………………………………………....4 1-1-3 覆晶接合……………………………………………………..4 1-2 電子構裝銲錫接點的電遷移效應……………………………….7 1-2-1 電遷移………………………………………………………..7 1-2-2 電遷移的早期研究………………………………………....8 1-2-3 電遷移研究的理論模型…………………………………....9 1-2-3-1基本架構…………………………………………………....9 1-2-3-2 Fiks的理論…………………………………………......11 1-2-3-3 Huntington 與Grone的理論…………………………....12 1-2-3-4其他的理論…………………………………………….....12 1-2-4 不同材料系統之電遷移行為……………………………...13 1-2-4-1有效電荷的計算……………………………………..…...13 1-2-4-2 zel與zwd的計算…………………………………..…..…16 1-2-4-3純金屬之自我電遷移……………………………....…….17 1-2-4-4溫度與電流密度對電遷移效應之影響………….……....19 1-3 界面反應…………………………………………………....23 1-3-1 不同基材與銲錫間的的界面反應………………………...23 1-3-1-1錫/銀界面反應…………………………………………....28 1-3-1-2鋅/鎳界面反應…………………………………………....28 1-3-1-3錫-0.7wt%銅/鎳界面反應………………………………..29 1-3-2 電遷移對界面反應的影響…………………….……...….29 1-4 研究目的……………………………………………………….....30 第貳章、實驗方法與步驟 2-1 實驗構想………………………………………………………...32 2-2電遷移實驗試片與實驗裝置……………………………………..34 2-2-1 不同成分銲錫試片之製作…………………………………..34 2-2-2 電遷移試片之製作…………………………………………..34 2-2-3 通電設備與基座之製備……………………………………..42 2-3 電遷移實驗條件…………………………………………….…..46 2-3-1 電遷移實驗條件之設計….…………………………….46  2-3-2時效熱處理之條件………..……………………………..46 2-4 電效應之電極界面分析………………………………………...46 2-5 時效熱處理後界面分析………………………………………...48 第參章、結果與討論…………………………………………………...49 3-1 電遷移效應對試片界面反應之影響…………………………...49 3-1-1 錫/銅試片經電遷移試驗前之界面反應型態與分析….49 3-1-2 錫/銅試片經電遷移試驗後之界面反應型態與分析….49 3-1-3 錫鋅銲錫/銅試片經電遷移試驗前之電極界面反應型態與 分析……………………………………………………….60 3-1-4 錫鋅銲錫/銅試片經電遷移試驗後之電極界面反應型態與 分析…………………………………………………………........67 3-1-4-1 Sn-8.6Zn銲錫試片之電遷移行為………………………..67 3-1-4-2 Sn-4.5Zn及Sn-2.5Zn銲錫試片之電遷移行為…………..83 3-2 電遷移試驗時介金屬化合物之成長機制…………………….....99 3-2-1介金屬化合物成長路徑………………………………….....100 3-2-2 熱時效處理與電遷移試驗對介金屬化合物生成之比較....100 第肆章、結論…………………………………………………………..116 參考文獻……………………………………………………………..…118 誌謝……………………………………………………………………..122 自述……………………………………………………………………..124

    1. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, Chapter
    1, (1995).
    2. D. D. L. Chung, Materials for Electronic Packaging,
    Butterworth-Heinemann, Boston, USA, Chap. 1, (1995).
    3. J. H. Lau, Chip on Board Techno; ogies for Multichip Modules, Van
    Nostrand Reinhold, New York, USA, Chap. 1, (1994).
    4. J. H. Lau, Ball Grid Array Technology, McGraw-Hill, New York,
    USA, Chap.1, (1995).
    5. D. P. Seraphim, R. C. Lasky, and C. Y. Li, Principles of Electronic
    Packaging, McGraw-Hill, New York, USA, Chap.19 (1993).
    6. K. Gilleo, Area array packaging handbook, McGraw-Hill, New York,
    2002, Chap. 1, (2002)
    7. V. B. Fiks, “On the Mechanism of the Ions in Metals”, Soviet
    Physics-Solid State, Vol. 1, pp. 14-28, (1959).
    8. H. B. Huntington and A. R. Grone, “Current-Induced Marker Motion
    in Gold Wires”, Journal of Physics and Chemistry of solids, Vol. 20, pp. 76-87, (1961).
    9. A. R. Grone, “Current-Induced Marker Motion in Copper”, Journal
    of Physics and Chemistry of solids, Vol. 20, pp. 88-93, (1961).
    10. C. Bosvieux and J. Friedel, “Sur L’Electrolyse Des Alliages
    Metalliques”, Journal of Physics and Chemistry of solids, Vol. 23, pp. 123-136, (1962).
    11. R. V. Penney, “Current-Induced Mass Tranaport in Aluminum”,
    Journal of Physics and Chemistry of solids, Vol. 25, pp. 335-345, (1964).
    12. K. A. Koh and S. J. Chua, “Electromigration in
    Aluminum/Silicon/Copper Metallization due to the Presence of a Thin Oxide Layer”, Journal of Electronic Materials, Vol. 26, No.9, pp. 1070-0175, (1997).
    13. W. C. Shih and A. L. Greer, “Transmission Electron Microscopy of
    Al-Cu Interconnects during In-Situ Electromigration Testing”, Thin Solids Films, Vol. 292, pp. 103-117, (1997).
    14. X. Y. Liu, C. L. Liu, and L. J. Borucki, “A New Investigation of
    Copper’s Role in Enhancing Al-Cu Interconnect Electromigration Resistance from an Atomistic View”, Acta materialia, Vol. 47, pp.
    3227-3231, (1999).
    15. H. W. Wanh, B. S. Chiou, and J. S. Jiang, “Electromigration in
    sputtered Copper Films on Polyimide”, Journal of Materials Science : Materials in Electronics, Vol. 10, pp. 267-271, (1999).
    16. H. B. Huntington, “Diffusion in Solids : Recent Developments”,
    edited by A. S. Nowick and J. J. Burton, Academic Press, New York, pp. 303-352, (1975).
    17. R. S. Sorbello, “A Pseudopotential Based Theory of the Driving
    Forces for Electromigration in Metals”, Journal of Physics and Chemistry of Solids, Vol. 34, pp. 937-950, (1973).
    18. H. B. Huntington, “Driving Forces for Thermal Mass Transport”,
    Journal of Physics and Chemistry of Solids, Vol. 29, pp. 1641-1651, (1968).
    19. D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhang, “Pb-Free Solders for
    Flip-Chip Interconnects”, JOM, Vol. 53, No. 6, pp. 28-32, (2001).
    20. W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu Concentration on
    the Interfacial Reactions between Ni and Sn-Cu solders”, Journal of Materials Reserch, Vol. 17, No. 2, pp. 263-266, (2002).
    21. C. E. Ho, Y. L. Lin, and C. R. Kao, “Strong Effect of Cu
    Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni”, Chemistry of Materials, Vol. 14, No. 3, pp. 949-951, (2002).
    22. H. B. Huntington, C. K. Hu, and S. N. Mei, “Diffusion in Solids :
    Recent Developments”, edited by M. A. Dayanada and G. E. Murch, TMS, Warrendale, PA, pp. 97-119, (1984).
    23. P. S. Ho and T. Kwok, “Electromigration in Metals”, Reports on
    Progress in Physics, Vol. 52, No. 3, pp. 301-348, (1989).
    24. N. V. Doan and G. Brebec, “Migration Sous L’Effet D’Un Champ
    Electrique De Ag Et De Sb Dans L’Argent”, Journal of Physics and
    Chemistry of Solids, Vol. 31, pp. 475-484, (1970).
    25. M. Y. Hsieh and H. B. Huntington, “Electromigration of Copper in
    Lead”, Journal of Physics and Chemistry of solids, Vol. 39, pp. 867-871, (1978).
    26. D. A. Golopentia and H. B. Huntington, “A Study of
    Electromigration of Nickel in Lead”, Journal of Physics and
    Chemistryof solids, Vol. 39, pp. 975-984, (1978).
    27. D. C. Yeh and H. B. Huntington, “Extreme Fast-Diffusion System :
    Nickel in Single-Crystal Tin”, Physical Review Letters, Vol. 53, No.15, pp. 1469-1472, (1984).
    28. J. Shi and H. B. Huntington, “Electromigration of Gold and Silver in
    Single Crystal Tin”, Journal of Physics and Chemistry of solids, Vol. 48, pp. 693-696, (1987).
    29. 陳志銘,清華化工所博士論文,第23到24頁, (2002)。
    30. X. H. Wang and H. Conrad, “Kineyics of Wetting Ag Substrates by
    60Sn40Pb”, Scripta Metallurgica et Materialia, Vol. 30, No.6, pp. 725-730, (1994).
    31. S. K. Sen, A. Ghorai, and A. K. Bandyopadhyay, “Interfacial
    Reactions in Bimetallic Ag-Sn Thin Film Couples”, Thin Solid Films, Vol. 155, pp. 243-253, (1987).
    32. K. N. Tu and R. Rosenberg, Japanese Journal of Applied Physics,
    Suppl. Vol. 2, No.1, pp. 633-636, (1974).
    33. H. P. R. Frederikse, R. J. Fields, and A. Feldman, “Thermal and
    Electrical Properties of Copper-Tin and Nickel-Tin Intermetallics”, Journal of Applied Physics, Vol. 72, No.7, pp. 2879-2882, (1992).
    34. T. Shimozaki and M. Onishi, Journal Japan Institute of Metals, Vol.
    45, pp. 1221-1222, (1981).
    35. N. Bertolino, J. Garay, U. Anselmi-Tamburini, and Z. A. Munir,
    “Electromigration Effects in Al-Au Multilayers”, Scripta Materalia, Vol. 44, pp. 737-742, (2001)
    36. M. Braunovic and N. Alexandrov, “Intermetallic Compounds at
    Aluminum-to-Copper Electrical Interfaces : Effect of Temperature and Electric Current”, IEEE Transaction on Components, Packaging and Manufacturing Technology – part A, Vol. 17, No.1, pp. 78-85, (1994)
    37. D. M. Rowe, Handbook of Thermoelectric, CRC, New York, pp. 8, 9,
    20, 21, 200, 598, 599, 636, (1995).
    38. C. E. Ho, Y. L. Lin, and C. R. Kao, “Strong Effect of Cu
    Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni”, Chemistry of Materials, Vol. 14, No.3, pp. 949-951, (2002).
    39. H. Gan and K. N. Tu, “Effect of Electromigration on Intermetallic
    Compound Formation in Pb-Free Solder-Cu Interfaces”, Electronic Components and Technology Conference, pp. 1206-1212, (2002)
    40. C. H. Ma and R. A. Swalin, “Self-Diffusion in Liquid Tin”, The
    Journalof Chemical Physics, Vol. 36,pp. 3014-3018, (1962).

    41. T. Yamamura and T. Ejima and, Japanese Journal of Applied Physics
    Institutes of Metals, Vol. 37, p. 901, (1973).
    42. 陳皇鈞,材料科學與工程(上),曉園出版社,第109頁,(1986)。
    43. C. M. Cheng and S. W. Cheng, “Electromigration Effect upon the
    Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni Interfacial Reactions”, Journal of Applied Physics, Vol. 90, No.3, pp. 1208-1214, (2001).
    44. H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagram, (New
    York : ASM, 1986), p. 316.
    45. 杜美瑤,清華化工所碩士論文,第38到65頁,(2002)。
    46. S. C. Chang and K. L. Ling, “Interfacial Evolution between Cu and
    Pb-Free Sn-Zn-Ag-Al”, Journal of Material Research, Vol.18,No.8, pp. 1795-1803, (2003).

    下載圖示 校內:立即公開
    校外:2004-07-07公開
    QR CODE