| 研究生: |
江采芸 Chiang, Tsai-Yun |
|---|---|
| 論文名稱: |
道路工程金額與碳排之相關性分析 Analysis of correlation between roadway construction cost and carbon emissions |
| 指導教授: |
張行道
Chang, Andrew S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 碳足跡 、碳排計算 、工程金額 、相關性 、道路工程 |
| 外文關鍵詞: | Carbon footprint, carbon emission calculation, construction cost, correlation, roadway construction |
| 相關次數: | 點閱:131 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑑於氣候變遷造成地球暖化,2050年達成淨零碳排成為全球努力目標,近年已有許多工程減碳的研究,道路工程也不例外。然計算碳排過程繁瑣且耗時,而工程金額是所有工程都會有的資訊,若能找出金額與碳排間的關係,或能以其推估出工程碳排。
本研究蒐集22個道路工程案例,分析其金額與碳排的相關性。了解碳排的計算方法,訂定計算邊界,將案例的工程金額以全部材料、前10及前20項材料、大工項及材料工項、新建或整建、直接或間接工程、道路類型、工項數等,以迴歸分析及Spearman等級相關性計算案例各種金額與碳排的相關性,分析相關性高低,最後提出相關性公式。
彙整22個案例相關性計算,得出結果如下,工程金額與碳排相關性為0.99,公式為y=40.451x-2126.8,以工程金額代入x推估工程碳排y;全部材料金額與工程碳排相關性0.99,公式為y= 48.619x-3530.1,材料金額平均占工程金額83%,算出後除83%及為推估的工程碳排;前10項材料金額相關性0.99,公式y = 46.645x - 1664.6,金額占比63%;前20項材料金額相關性0.99,公式y = 46.443x-1978.1,金額占比69%,工程金額、材料金額與碳排相關性高,可以此推估工程碳排。
其他類別工項、種類金額與碳排相關性分別為,道路工程0.94、排水工程0.94、擋土牆及護坡工程0.80、橋梁工程0.99、混凝土0.99、鋼筋0.91、瀝青混凝土0.97、碎石0.95、新建道路0.99、直接工程0.99、單位碳排面積0.41、一般道路0.99。間接(假設)工程、整建道路、高速公路、工項數碳排的相關性中高,可搭配前述材料與碳排相關性,推估整體工程的碳排放。
This study investigates the correlation between the costs and carbon emissions of roadway construction projects. Since calculating carbon emissions is a complex and time-consuming process and costs are available for all projects, identifying the relationships between costs and carbon emissions could enable to estimate carbon emissions based on project costs.
The study collected data from 22 roadway cases and analyzed the correlation between various costs—such as total material, top 10 and top 20 materials, categories and work items, new construction or reconstruction, direct or indirect construction, road types, and the number of work items—and carbon emissions using regression analysis and Spearman rank correlation.
The results show a correlation of 0.99 between project costs and carbon emissions. The correlation between total material costs and carbon emissions is 0.99, with material costs averaging 83% of total project costs. The top 10 material costs show a correlation of 0.99, representing 63% of the total cost, while the top 20 material costs have a correlation of 0.99, representing 69% of the total cost. By category, the correlations between project costs and carbon emissions are 0.94 for road work, 0.94 for drainage work, 0.80 for retaining walls and slope protection, and 0.99 for bridge. For material costs and emission, the correlations are 0.99 for concrete, 0.91 for steel, 0.97 for asphalt concrete, and 0.95 for gravel. New roadway construction shows a higher correlation than reconstruction, and direct construction shows a higher correlation than indirect one.
These correlations, derived through regression analyses, allow for the estimation of carbon emissions of an overall project or specific work items based on the derived regression formula.
英文文獻
1. Alloza, A. M. R., Malik, A., Lenzen, M, and Gallego, J. (2015).“Hybrid inputeoutput life cycle assessment of warm mix asphalt mixtures,” Journal of Cleaner Production, Vol.90, pp.171-182.
2. Ashtiani and Muench (2022). “Using construction data and whole life cycle assessment to establish sustainable roadway performance benchmarks,” Journal of Cleaner Production, Vol.380, 135031.
3. Biswas, W. K. (2014).“Carbon footprint and embodied energy assessment of a civil works program in a residential estate of Western Australia,” Int J Life Cycle Assess, Vol.19, pp.732-744.
4. Huntzinger, D. and Eatmon, T. (2009). “A life-Cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,”Journal of Cleaner Production,Vol.17,No.7, pp.668-675.
5. Fankhauser, S., Smith, S. M., Allen, M., Axelsson, K., Hale, T., Hepburn, C., Kendall, J. M., Khosla, R., Lezaun, J., Larson, E. M., Obersteiner, M., Rajamani, L., Rickaby, R., Seddon, N. and Wetzer, T. (2021), “The meaning of net zero and how to get it right,” Natural Climate Change, Vol.12, pp.15–21.
6. Fenner, A. E., Kibert, C. J., Woo, J., Morque, S., Razkenari, M., Hakim, H. and Lu, X. (2018).“The carbon footprint of buildings: A review of methodologies and applications,” Renewable and Sustainable Energy Reviews, Vol.94, pp.1142-1152.
7. ISO 14040 (2006). “Environmental management — Life cycle ssessment —Principles and framework,” ISO, Switzerland.
8. ISO 14064 (2018). “Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals,” ISO, Switzerland.
9. Kanafani, K., Magnes, J., Lindhard, S. M. and Balouktsi, M. (2023). “Carbon Emissions during the Building Construction Phase: A Comprehensive Case Study of Construction Sites in Denmark,” Sustainability, 15(14),10992.
10. Karim, A. E., Albitar, K. and Elmarzouky, M. (2021). “ A novel measure of corporate carbon emission disclosure, the effect of capital expenditures and corporate governance,” Journal of Environmental Management, Vol. 290, 112581.
11. Karlsson, I., Rootzén, J., Johnsson, F., and Erlandsson, M. (2021). “Achieving net-zero carbon emissions in construction supply chains – A multidimensional analysis of residential building systems,” Developments in the Built Environment, Vol. 8, 100059.
12. Karlsson, I., Rootzén, J. and Johnsson, F., (2020). “Reaching net-zero carbon emissions in constructionsupply chains – Analysis of a Swedish road construction project,” Renewable and Sustainable Energy Reviews, Vol.120, 109651.
13. Kumar, A., Luthra, S., Mangla, S. K., Reyes, J. A. G. and Kazancoglu, Y. (2023). “Analysing the adoption barriers of low-carbon operations: A step forward for achieving net-zero emissions,” Resources Policy, Vol. 80, 103256.
14. Lai, K. E., Rahiman, N. A., Othman, N., Ali, K. N., Lim, Y. W., Moayedi, F. and Dzahir, M. A. M. (2023). “Quantification process of carbon emissions in the construction industry,” Energy and Buildings, Vol. 289, 113025.
15. Li, J., Xiao, F., Zhang, L., and Amirkhanian, S. N. (2019). “Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review,” Journal of Cleaner Production , Vol. 233, pp.1182-1206.
16. Liu, N., Wang, Y., Bai, Q., Liu, Y., Wang, P. S., Xue, S., Yu, Q., and Li, Q. (2022). “Road life-cycle carbon dioxide emissions and emission reduction technologies: A review,” ScienceDirect, 9(4), pp.532-555.
17. Mao, R., Duan, H., and Dong, B. (2017). “Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China,” Journal of Cleaner Production,166, pp. 40-48.
18. Muench, S. T., Anderson, J., and Bevan, T. (2010). “Greenroads: A Sustainability Rating System for Roadways,” International Journal of Pavement Research and Technology, Vol.3, No.5, pp.270-279.
19. Rooshdia, R. R. M., Rahman, N. A., Baki, N. Z. U., Majid, M. and Ismail, F. (2014). “An evaluation of sustainable design and construction criteria for green highway,” Procedia Environmental Sciences, Vol.20, pp.180-186.
20. Sizirici, B., Fseha, Y., Cho, C. S., Yildiz, I., and Byon, Y. (2021). “A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation,” Materials, 14(20), 6094.
21. Sormunen and Kärki (2019). “Recycled construction and demolition waste as a possible source of materials for composite manufacturing,” Journal of Building Engineering, Vol. 24, 100742.
22. Specification, P. A. (2008). “Specification for the Assessment of the Life CycleGreenhouse Gas Emissions of Goods and Services PAS 2050: 2008,” British Standards Institution: London, UK.
23. Trinks, A., Mulder, M., and Scholtens, B. (2020). “ An Efficiency Perspective on Carbon Emissions and Financial Performance,” Ecological Economics, Vol. 175, 106632.
中文文獻
1. 工程會(2008),永續公共工程-節能減碳政策白皮書,行政院公共工程委員會,台北。
2. 公路總局(2023),https://suhua.thb.gov.tw/cp.aspx?n=10617,2023年10月06日上網資料。
3. 公路總局(2017),台9線蘇花公路山區路段改善計畫施工期間工程碳管理委託服務工作106年度年中進度報告書,交通部公路總局蘇花公路改善工程處,台北。
4. 朱士傑(2014),材料製造與施工階段環境衝擊分析-以兩橋梁為例,國立成功大學土木工程系碩士論文。
5. 低碳聯盟(2023),https://www.lcba.org.tw/,2023年12月10日上網資料。
6. 何臻(2022),道路工程碳排放基線與考量鋪面厚度下之每平方米面積碳排放,國立成功大學土木工程系碩士論文。
7. 林子言(2021),建立台灣道路的碳足跡基線,國立成功大學土木工程系碩士論文。
8. 林文華(2011),產品與服務碳足跡國際標準發 展現況及查證實務經驗分享,永續產業發展季刊,第54期,57-74頁。
9. 東和鋼鐵(2016),東和鋼鐵105企業社會責任報告書,台北。
10. 吳衍諭(2018),台灣政策環境影響評估制度分析:以台灣能源政策為例,國立台灣大學環境工程系博士論文。
11. 吳婉萍(2014),營建材料碳稅選定模式之研究,國立宜蘭大學土木工程系碩士論文。
12. 邱柏凱、楊士賢(2020),利用複合生命週期評估建立台灣道路工程材料碳足跡計算架構,鋪面工程,第十八卷,第四期,13-15頁,中華鋪面工程學會。
13. 邱裕雄(2024),企業邁向靜玲碳排放的障礙因素研究-以台灣製造業為例,國立台北科技大學環境工程與管理研究所碩士論文。
14. 空氣污染防制法(2003),既存固定污染源污染物排放量認可準則,行政院環境保護署。
15. 建研所(2019),建築材料碳足跡資料系統建置之研究,內政部建築研究所。
16. 馬湘甯(2023),結構系統與結構材料對於鋼構建築碳排的影響,國立成功大學土木工程系碩士論文。
17. 曾文生(2022),淨零產業轉型與綠色供應鏈,臺灣經濟論衡,第20卷,第3期,19-27頁,國家發展委員會。
18. 黃盈庭(1999),投入產出分析應用於生命週期評估-台灣地區水泥範例研究,國立成功大學資源工程學系碩士論文。
19. 經濟部產發署(2023),生命週期評估,https://www.idbcfp.org.tw/ViewData.aspx?nnid =203,2023年10月更新網頁資料。
20. 張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,國立成功大學碩士論文。
21. 張德鑫 (2011),新興公共工程計畫落實節能減碳評估,行政院農業委員會林務局委託研究計畫。
22. 詹昇皓(2022),碳稅對營建施工方法選擇之影響,國立宜蘭大學土木工程系碩士論文。
23. 鄭曜東(2022),營建碳排放估算與管控系統開發,淡江大學土木工程系碩士論文。
24. 環保署(2022),溫室氣體排放量盤查作業指引,行政院環境保護署。
25. 環保署(2016),推動產品碳足跡管理要點,行政院環境保護署。
26. 羅元佑(2016),碳足跡計算假設與流程之建立與印證-以某道路工程為例,國立成功大學土木工程系碩士論文。
校內:2027-08-01公開