簡易檢索 / 詳目顯示

研究生: 張維婷
Chang, Wei-Ting
論文名稱: 波浪效應對潛艇操縱性能影響之研究
Study on the Maneuverability of Submarine with Wave Effect
指導教授: 方銘川
Fang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 潛艇波浪效應操縱性六度運動
外文關鍵詞: submarine, wave effect, maneuverability, motion in six degree of freedom
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為發展一可利用之完整操縱模式,模擬潛艇於不同海況及水深之各項操縱行為。本文中仿擬之潛艇構型是以海軍船艦研究發展中心發表之潛艇資料(包括主要尺寸及流體動力係數)為基礎,加入水櫃之配置設計後供數學模式模擬之用。潛艇之運動方程式以Gertler & Hagen發表之潛艇模擬研究之標準運動方程式為基礎,納入水櫃效應及波浪之影響,以期建立更完整之數學模式。
    本研究利用四階Runge-Kutta數值計算方法來執行潛艇運動之時程模擬,以進行各項操縱試驗狀況之模擬。文中首先進行各項潛艇決定性操縱試驗之模擬,包括水平面之螺旋試驗(Spiral test)、回舵試驗(Pull out)、迴旋試驗及ZIGZAG試驗,垂直面之上浮下潛試驗及垂直面超射試驗(Meander)等,由模擬結果顯示本研究開發之模擬系統可合理地模擬潛艇之六度運動。此外,本文亦進一步加入水櫃操作及波浪因素,由模擬結果亦可驗證水櫃操作設計之合理性以及波浪對潛艇於近水面之運動有相當之影響。
    整體而言,本論文提供一套可分析潛艇於不同海況及深度下運動之模擬程式,未來除了可以用以國艦國造之潛艇初部設計及分析,更可發展成操航模擬系統以供潛艇操縱訓練之用途。

    The purpose of the study is to develop a proper submarine maneuvering model to simulate the motion of the submarine in seaway. The mathematic model used here for simulation is based on equations of motions developed by Gertler & Hagen and the related hydrodynamic coefficients are adopted from the data published by Naval Ship Research and Development Center. Besides, in order to make the mathematic model more extensively useful, ballast tank effect and wave effect are also taken into consideration in equations of motions.
    The time domain simulation for submarine’s motion is treated by the forth Runge-Kutta method. Before simulating the motions of the submarine at sea, the typical definitive submarine trials will be simulated firstly, including horizontal plane and vertical plane tests. The horizontal plane tests include turning circle test, spiral test, pull out test, and zigzag test whereas the vertical plane tests include float up test, dive test and meander test. According to the simulated results, we find that the submarine maneuvering mathematical model developed by this study is reasonable. Besides, the results also reveal wave effect will significantly affect submarine motion when it is sailing near the free surface and the ballast system is also an important factor influencing the submarine motion.
    Overall, the simulation program developed in the present study can reasonably analyze the motions of submarine in the seaway. We hope the simulation program could be utilized to the preliminary design of Indigenous Defense Submarine and the related maneuvering training simulator.

    摘要 I ABSTRACT II 致謝 XIII 目錄 XIV 表目錄 XVIII 圖目錄 XIX 符號說明 XXI 第一章 緒 論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 本文架構 4 第二章 潛艇運動與操縱數值模型 5 2-1 座標系統 5 2-2 運動方程式 8 2-2-1 潛艇本體慣性力 11 2-2-2 潛艇流體動力 12 2-2-3 螺槳推力及扭矩 13 2-2-4 縱移方向阻力 13 2-2-5 橫向阻力 14 2-2-6 不同運動方程式之比較 15 2-3 波浪力影響 17 2-3-1 基本假設 17 2-3-2 邊界條件 18 2-4 主水櫃操作導入 20 2-4-1 潛艇質量變動模式 20 2-4-2 變動質量對重心及慣性矩之影響 21 2-4-3 潛艇浮力及重力浮力差 22 2-4-4 含水櫃效應之潛艇六度運動慣性力導式 23 2-5 潛艇自動操航控制 25 2-5-1 瞄準線(Line of Sight) 25 2-5-2 PD(Proportional-Derivative)控制 26 2-5-3 路徑點 26 2-6 數值方法及計算流程 26 2-6-1 數值方法 26 2-6-2 計算流程 27 第三章 模擬潛艇之構造配置及相關性能 29 3-1 模擬潛艇之主要構造 29 3-1-1 幾何外型 29 3-1-2 水櫃配置 30 3-2 推進系統 31 第四章 潛艇操縱試驗模擬條件設定 32 4-1 水平面決定性操縱試驗模擬 33 4-1-1 直線穩定性能評估 33 4-1-2 迴旋運動基本性能 34 4-1-3 ZIGZAG操舵性能 34 4-2 垂直面決定性操縱試驗模擬 35 4-2-1 垂直面機動性能評估 35 4-2-2 垂直面之超射操縱試驗 35 4-3 水櫃操作模擬 36 4-3-1 浮航下潛操作 39 4-3-2 深潛上浮操作 39 4-3-3 近水面上浮操作 39 4-4 考慮波浪之操縱試驗模擬 40 4-4-1 直線航行 40 4-4-2 下潛 41 第五章 模擬結果與討論 42 5-1 水平面操縱 42 5-1-1 直線穩定性能試驗 42 5-1-2 迴旋運動性能試驗 45 5-1-3 ZIGZAG操舵性能試驗 48 5-2 垂直面操縱 49 5-2-1 垂直面機動性能評估 49 5-2-2 垂直面之超射操縱試驗 52 5-3 水櫃操作 53 5-3-1 浮航下潛 53 5-3-2 深潛上浮 56 5-3-3 近水面上浮 59 5-4 考慮波浪之操縱 62 5-4-1 直線航行 62 5-4-2 下潛 70 第六章 結論與未來展望 75 參考文獻 77 附錄A 80 附錄B 82 附錄C 84 附錄D 86 附錄E 87

    【1】 Abkowitz, M.A., Lectures on ship hydrodynamics – Steering and maneuvering, 1964
    【2】 Davidson, K.S.M., and L.I. Schiff, Turning and course keeping qualities, Trans. SNAME, Vol.54, 1946
    【3】 Feldman J., DTNSRDC revised standard submarine equations of motion, AD A071804, 1979
    【4】 Feldman, J. , Straightline and Rotating Arm Captive-model Experiments to Investigate the Stability and Control Characteristics of Submarines and Other Submerged Vehicles. David Taylor Research Center, Bethesda MD, Ship Hydromechanics Department, 1987
    【5】 Gertler M. Hagen R., Standard equations of motion for submarine simulation, AD-653 861, SNAME, 1967
    【6】 Gillmer, T. C. ”Modern Ship Design” U. S. Naval Academy, 1971
    【7】 He Zhang, Yu-ru Xu, Hao-peng Cai., “Using CFD Software to Calculate Hydrodynamic Coefficients”, Journal of Science Marine Applications, Vol.9, 2010.
    【8】 Hovgaard William, "Turning Circles," Transactions of the Institution of Naval Architects, Vol 54, pp. 23-24, 1912
    【9】 Haskind M. D., “The Oscillation of a ship in still water,” Prikladnaya Matematika I Mekhanika, Vol. 10, No. 1,1946, pp.23-24, Translated by SNAME 1953, SNAME Technical and Research Bulletin No. 1-12
    【10】 Haskind M. D., “The hydrodynamic Theory of ship Oscillation in Rolling and Pitching,” Bulletin de I’Acadimie des Sciences de I’URSS, Classes des Sciences Techniques, No. 1,1946, pp.23-24, Translated by SNAME 1953, SNAME Technical and Research Bulletin No. 1-12
    【11】 Imlay. Frederick H., "A Nomenclature for Stability and Control" David Taylor Model Basin Report 1319, 1959
    【12】 Kempf, G., Measurements of the Propulsive andStructural Characteristics of Ships, Transactions of SNAME, Vol. 40, pp. 42-57, 1932
    【13】 Medorian D. Gheorghiu and Y. D. Song, Control of Submarine Operating in Shallow Waters: A Neuro-adaptive based approach, 2004
    【14】 Martin Renilson, “Submarine Hydrodynamics”, Springer Briefs in Applied Sciences and Technology, Springer Cham Heidelberg New York Dordrecht London, 2015
    【15】 Nomoto, K., Taguchi, K., Honda, K. and Hirano, S., “On the Steering Quality of Ships,” International Shipbuilding Progress, Vol. 4, 1957
    【16】 PAN Yu-cun, ZHANG Huai-xin, ZHOU Qi-dou, Numerical prediction of submarine hydrodynamic coefficients using CFD simulation, Journal of Hydrodynamics, Vo1.24, 2012
    【17】 R. Cristi, F. A. Papoulias, and A. J. Healey, Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane, IEEE Journal of Ocean Eng.,Vo1.15, No. 3, pp. 152-160, July 1990
    【18】 R. J. Richards, and D. P. Stoten, Depth Control of A Submersible Vehicle, Int. Shipbuilding Progress, Vol.28, pp. 30-39, Feb.1981
    【19】 Robert J. Boswell, Design, Cavitation Performance, and Open-water Performance of a Series of Research Skewed Propellers. 1971, NSRDC Report 3339.
    【20】 Seol, D.M., An Experimental Study of the Depth Effect on the Manoeuvrability in a Horizontal Plane of the Submerged Body. Seoul National University (Master Thesis), 2005
    【21】 Orhan K. Babaoglu, Designing an Automautic Control System For a Submarine, 1988
    【22】 Xiongwei Lin, Dabin Hu and Duan Zhengqiang, The Research on Fuzzy-PID Control of the Submarine Course, Fifth International Symposium on Computational Intelligence and Design, 2012
    【23】 林守毅,潛艦流體動力係數之拘束船模試驗分析,國立台灣大學工程科學及海洋工程學系碩士論文,民國九十四年
    【24】 郭真祥,潛艦關鍵技術之基礎研究:阻力推進領域研究現況,第四屆水下工程學術研討會論文集,民國九十二年
    【25】 張培恩,潛艦於自由液面下受波浪影響之定深控制運動分析,中國造船暨輪機工程學刊,民國一零五年
    【26】 張祐鴻,潛艇運動數學模式之建構與模擬,國立台灣大學工程科學及海洋工程學研究所碩士論文,民國九十五年
    【27】 劉韋群,應用模組化數學模式之潛艦操船模擬系統之研發,國立台灣大學工學院工程科學及海洋工程學研究所碩士論文,民國一零四年

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE