| 研究生: |
李卓翰 Lee, Cho-Han |
|---|---|
| 論文名稱: |
二氧化釩薄膜之製備及其性質研究 Preparation and characteristics of vanadium dioxide thin film |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 二氧化釩薄膜 、無機溶膠凝膠法 |
| 外文關鍵詞: | VO2 thin film, Inorganic sol gel method |
| 相關次數: | 點閱:251 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
VO2具有溫度相變的特性,特別是電性及光學等性質會隨相變而發生急遽之變化。VO2可作為智慧窗玻璃的塗層薄膜材料,可隨週遭溫度變化而調節紅外線反射率,具有節約能源之功用。
以往VO2薄膜的製備是需在具有危險性的CO還原氣氛下操作。為改善此缺點,本研究針對其製程加以改進,研究方法包括以無機溶膠凝膠法製備V2O5溶膠,並將之浸鍍於石英玻璃基板上,再藉由碳粉將V2O5膜還原為VO2薄膜。實驗是藉由TG/DTA、Viscometer等儀器來分析V2O5溶膠的特性;利用XRD、SEM、FTIR、Four-probe等儀器來分析VO2薄膜的特性;並檢討乾燥條件、煅燒溫度、持溫時間、浸鍍次數及Mo之摻雜量對VO2薄膜微觀結構及相變性質之影響。
製備的V2O5膜於N2下經550℃以上煅燒後即可形成VO2(M)薄膜,VO2之結晶性是隨煅燒溫度之增加而增加。VO2薄膜之表面是由圓形顆粒和空隙所組成,其顆粒大小是隨著煅燒溫度及持溫時間之增加而增大,隨著浸鍍次數之增加,薄膜表面之粗糙度也隨之增大。
在光學及電性質方面,隨著煅燒溫度及持溫時間之增加,VO2(M)薄膜之紅外光穿透率會隨之上升,而其熱滯迴圈寬度與相轉變溫度則會隨之減小(69.5℃68℃)。隨著浸鍍次數(薄膜厚度)之增加,紅外光穿透變化率會隨之增加,而熱滯迴圈寬度與相轉變溫度並無明顯變化。
隨著Mo摻雜量之增加,VO2薄膜之電阻及紅外光穿透率隨之減少,相轉變溫度亦會隨之降低。甚至低至35℃。
VO2 has a property of phase transition. When VO2 undergoes phase transition, accompanied by drastic changes in electric and optical properties. VO2 can adjust reflectance of infrared rays when ambient temperature changes. Therefore, it can be as the coatings film material of intelligent window with saving energy effect.
In order to improve the need of operating in dangerous CO reduction atmosphere during preparing VO2 thin film in the past. We improved the process in this study. The method included applying inorganic sol-gel method to prepare V2O5 sol then V2O5 film was forming on fused silica after dipped into the sol. Then, we used carbon powder to reduce V2O5 to VO2 thin film. The preparing V2O5 sol was characterized by TG/DTA、Viscometer;the synthesized VO2 thin film was analyzed by XRD、 SEM、FTIR、Four-probe. Effects of parameters of drying conditions、calcination temperature、 holding time 、 dipping times and doping amount of Mo on microstructure and phase transition properties of VO2 film were investigated.
VO2 (M) thin film was formed by calcining V2O5 film at 550℃ in N2, and the crystallization increased with temperature. The surface of VO2 thin film was composed of round shape particles and voids, and the size of particle increased with calcinations temperature and holding time increased. The roughness of film surface increased with dipping times increased.
In optical and electrical properties, the transmittance of infrared ray of VO2 (M) thin film increased and the heat hysteretic width and phase transition temperature decreased (69.5℃68℃) with calcinations temperature and holding time increased. the transmittance of infrared ray and the heat hysteretic width and phase transition temperature increased with dipping times (film thickness) increased.
The electric resistance and infrared ray of VO2 thin film decreased with adding amount of Mo increased. The phase transition temperature also even lowered to 35℃.
1. F. J. Morin, “Oxides which show a metal-to-insulations transition at the neel temperature,” Phys. Rev. Lett., 3(1), 34-35 (1959)
2. B.Goodenough, “The two components of the crystallographic transition in VO2 ,” J. Solid State Chem., 3, 490-500 (1971)
3. 徐國彬,以溶膠凝膠法備製非冷卻型紅外光感測薄膜V1-x-yWxSiyO2之光學及電性性質研究,國立台北科技大學化學工程學系碩士論文 (2004).
4. S. Minomora and H. Nagasaki, “The effect of pressure on the metal-to-insulator transition in V2O4 and V2O3,” J. Phys. Soc. Japan, 19, 131-132 (1964)
5. J. F. De Natale, P. J. Hood, A. B. Harker, “Formation and characterization of grain-oriented VO2 thin films,” J. Appl. Phys., 66, 5844-5850 (1989)
6. W. Haidinger and D. Gross, “Anomalous hysteresis shape of thin VO2 layers,” Thin Solid Film, 12, 433(1972).
7. W. R. Roach, “Holographic storage in VO2,”Appl. Phys. Lett., 19, 453-455 (1971).
8. A. W. Smith, “Optical storage in VO2 films,” Appl. Phys. Lett., 23, 437-438 (1973).
9. G. V. Jorgensen, J. C. Lee, Solar Energy Mater. , 14, 205 (1986).
10. T. D. Manning and I. Parkin, “Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6,” Journal of materials chemistry, 14, 2554-2559 (2004).
11. A.Rogalski, Infrared detector, Gordon and Breach Science Publishers, Amsterdam, 2000.
12. Ch. Leroux, “From VO2(B) to VO2(R):Theoretical structures of VO2 polymorphs and in situ electron microscopy,” Physical Review B, 57 (9), 5111-5121 (1998).
13. M. Tazawa, P. Jin, T. Miki, k. Yoshimura, K. Igrashi and S. Tanemura, “IR properties of SiO deposited on V1−xWxO2 thermochromic films by vacuum evaporation,” Thin solid films, 375, 100-103 (2000).
14. C.Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard and Y.Sampeur, “Preparation, characterization and properties of sputtered electrochromic and thermochromic devices,” Surface and Coatings Technology, 98 ,1477-1482 (1998).
15. R. T. Rajendra, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. ater. Struct. 12 ,188-192 (2003).
16. G. Guzman, R. Morineau and J. Livage, “Synthesis of vanadium dioxide thin films from vanadium alkoxides,” Materials Research Bulletin, 29(5), 509-515 (1994).
17. C. B. Greenberg, “Undoped and doped VO2 films grown from VO(OC3H7)3,” Thin Solid Films, 110, 73-82 (1983).
18. D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium dioxide films by a sol-gel process,” J. Appl. Phys., 70(1), 443-452, (1991).
19. T. Maruyama, and Y. Ikuta, J. Mater. Sci. 28, 5073-5078 (1993)
20. K. R. Speck, H. S.-W. Hu, M. E. Sherwin , and R. S. Potember, “Vanadium dioxide films grown from vanadium tetra-isopropoxide by the sol-gel process,” Thin Solid Films, 165, 317-322 (1988).
21. T. J. Hanlon, R. E. Walker, J. A. Coath , and M. A. Richardson, “Comparison between vanadium dioxide coatings on glass produced by sputtering, alkoxide and aqueous sol-gel methods,” Thin Solid Films, 405, 234-237 (2002).
22. Y. Dachuan, X. Niankan, Z. Jingyu , and Z. Xiulin, “High quality vanadium dioxide films prepared by an inorganic sol-gel method,” Materials Research Bulltien, 31(3), 335-340, 1996.
23. I. Takahashi, M. Hibino, and T. Kudo, “Thermalchromic V1-xWxO2 thin films prepared by wet coating using polyvanadate solutions,” Jpn. J. Appl. Phys., 35, 438-440 (1996).
24. J. Livage, “Vanadium pentoxide gels,” Chem. Mater., 3, 578-593 (1991).
25. O. Pelletier, P. Davidson, C. Bourgaux, C. Coulon, S. Regnault, and J. Livage, “A detail study of the synthesis of aqueous vanadium petoxide nematic gels,” Langmuir, 16, 5295-5303 (2000).
26. E. B. Shadrin, and A. V. Iľinskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State, 42(6), 1126-1133 (2000).
27. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund, “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” J. Appl. Phys., 92 (7), 4031-4036 (2002).
28. X. Shiqing, M. Hongping, and J. Zhonghong, “Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films,” Journal of materials science, 39, 489-493 (2004).
29. H. Trarieux, “Effect of substitution on the vanadium dioxide phase transition.Influence Changements Phase,” Prop. Phys. Corps. Solids., 101-114 (1970).
30. I. Balberg, B. Abeles, Y. Arie, “Phase transition in reactively Co-sputtered films of VO2-TiO2,” Thin Solid films, 24, 307 (1974).
31. R. M. Bowman, J. M. Gregg, “VO2 thin films:Growth and the effect of applied strain on their resistance,” J. Materials Science: Materials in electronics, 9(3), 187-191 (1998).
32. P. Jin, S. Nakao, and S. Tanemura, “Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing,” Thin solid films, 324, 151-158 (1998)
33. M. Pan, Z. Hongmei, and W. Shaowei, “Properties of VO2 thin film prepared with precursor VO(acac)2,” Crystal growth, 265, 121-126 (2004).
34. T. J. Hanlon, J. A. Coath, and M. A. Richardson, “Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method”, Thin Solid Films, 436, 269-272 (2003).
35. L. Songwei, H. Lisong , and G. Fuxi, “Surface analysis and phase transition of gel-derived VO2 thin films”, Thin Solid Films, 353, 40-44 (1999).
36. F. C. Case, “Modifications in the phase transition properties of predeposited”, J. Vac. Sci. Technol. 2(4), 1509-1512 (1984).
37. F. Beteille, Morineau, and J. Livage, “Switching properties of V1-xTixO2 thin films deposited from alkoxide”, Materials Research Bulletin, 8, 1109-1117 (1997).
38. M. Kakihana, "Sol-gel preparation of high temperature superconducting oxides" J. Sol-Gel Sci. Tech., 6, 7 (1996).
39. C. J. Brinker, A. J. Hurd, G. C.Frye, P. R. Schunk, and C. S. Ashly, “Sol-gel thin film formation”, Journal of the ceramic society of Janpan, 99, 862-877 (1991).
40. D. Briggs and M. P. Seah, Practical Surface Analysis, vol. 1, p.57 (John Wiley &Sons Ltd, 2nd edition, 1996)
41. M. Demeter, M. Neumann and W. Reichelt, Surface Science, 454, 41–44 (2000)