簡易檢索 / 詳目顯示

研究生: 施宗廷
Shih, Zong-Ting
論文名稱: 竹纖維黏彈行為之探討
Study on the Viscoelastic Behavior of Bamboo Fiber
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 竹纖維鹼處理黏彈性潛變鬆弛線性黏彈性模型
外文關鍵詞: bamboo fiber, alkali treatment, viscoelasticity, creep, relaxation, linear viscoelastic constitutive model
相關次數: 點閱:122下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文題目 : 竹纖維黏彈行為之探討
    研 究 生 : 施宗廷
    指導教授 : 楊文彬
    本研究主旨為探討竹纖維的黏彈行為。內容分為四個部分,第一部分為量測竹纖維的物理和機械性質,觀測竹纖維在鹼處理過程前後,以及在不同溫、溼度條件下的性質變化;第二部分為竹纖維潛變性質的量測,以負載固定為原則,觀測應變隨時間的變化;第三部分為竹纖維鬆弛性質的探討,以應變固定為原則,觀測應力隨時間的變化,試驗變動條件為環境溫度與含水量;第四部份為建構出擬合潛變與鬆弛曲線的數學關係式。試驗結果顯示,竹纖維經鹼處理後,截面積與等效直徑呈現下降。降伏與拉伸強度隨溫度、含水量提高而減弱,伸長率則呈正相關。潛變行為方面,初始階段應變隨時間增加,應變率遞減;第二階段,應變隨時間穩定增長,應變率趨於固定;第三階段應變急遽上升終至斷裂,固定負載為25N,潛變時長40-60分,斷裂應變約0.7%-0.8%。鬆弛行為方面,固定應變過大會有殘留應力產生。有含水的竹纖維其鬆弛速率會加快。溫度越高,鬆弛速率提高且幅度擴大,原因為濕熱環境下,結構彈性下降且滑動性提升,黏性成分作用增加,更易產生鬆弛。數學擬合方面,潛變曲線擬合僅包含初始及第二階段潛變區間,能大致呈現實際潛變趨勢。鬆弛曲線擬合方面,在小應變下,與實驗值偏差較小,能初步呈現實際鬆弛趨勢。而鬆弛模型亦能大致擬合實際潛變趨勢,說明潛變與鬆弛性質乃一體兩面,兩者可相互統合。

    The aim of this study is to investigate the viscoelastic behavior of bamboo fiber. Bamboo fibers were extracted mechanically and manually, and then undergone alkali treatment. At first stage, the physical properties, such as cross section, and the mechanical properties, such as yield strength and tensile strength, were measured. The cross section of bamboo fiber is smaller after alkali treatment. As moisture content or temperature increases, the yield strength and tensile strength both decrease. At the second stage, the creep test of wet bamboo fiber was conducted. Results show that the strain creep curve can be divided into three parts. In primary creep phase, strain increases at a decreasing rate. The secondary phase exhibits a linear relationship between the strain and time, also called steady-state creep. The tertiary stage is the stage in which strain response almost increases exponentially, resulting in the failure of the fiber. In creep test, the applied force was maintained at 25 N, and the fracture strain is about 0.7%-0.8%. In relaxation test, the strain was maintained constant, and the reaction force was measured. The ambient temperature and moisture content were the controlled variables. The relaxation results show that, in the wet or high temperature conditions, the relaxation rate is faster than that in dry or room temperature conditions. As the temperature rises, the elasticity in fiber structure declines, the fluidity increases, and the effect of viscous component increases. Therefore, the stress is easier to relax. About mathematical fitting model, the fitting in creep curve only includes primary and secondary phases, and the fitted curve can roughly show the creep variation. For the fitted relaxation curve, it's found that deviation is lower under the small strain. Fitted relaxation curves can preliminarily present actual stress relaxation tendency.

    目錄 中文摘要 I ABSTRACT II 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXI 第一章、緒論 1 1-1前言 1 1-2研究目的 2 1-3研究方法 3 1-4文獻回顧 8 1-4-1黏彈行為相關文獻 8 1-4-2潛變性質相關文獻 8 1-4-3鬆弛性質相關文獻 11 1-4-4竹纖維相關文獻 13 第二章、研究簡介 17 2-1刺竹介紹 17 2-2竹細胞結構介紹 18 2-3竹纖維提取技術介紹 19 2-4鹼處理介紹 20 2-5黏彈特性介紹 21 2-6黏彈行為擬合模型 23 第三章、研究規劃與製程設計 29 3-1竹纖維製作與物理性質量測 29 3-1-1實驗材料與設備 29 3-1-2竹纖維製作 31 3-1-3鹼處理流程 33 3-1-4物理性質量測流程 35 3-2竹纖維機械性質量測 36 3-2-1實驗材料與設備 36 3-2-2試片製作 37 3-2-3 0.2%應變偏距法修改 38 3-2-4實驗流程 38 3-3竹纖維潛變性質量測與模擬 46 3-3-1實驗材料與設備 46 3-3-2實驗流程 46 3-3-3潛變試驗數學模型擬合 48 3-4 竹纖維鬆弛性質量測與模擬 50 3-4-1實驗材料與設備 50 3-4-2實驗流程 51 3-4-3鬆弛試驗數學模型擬合 53 3-4-4鬆弛模型擬合潛變趨勢 56 第四章、實驗結果與討論 57 4-1竹纖維物理性質量測結果 57 4-2竹纖維機械性質量測結果 58 4-2-1 (試驗變動條件:含水量)機械性質量測結果 58 4-2-2 (試驗變動條件:環境溫度)機械性質量測結果 61 4-2-3鬆弛後竹纖維機械性質量測結果 63 4-3竹纖維潛變性質量測與模擬結果 67 4-3-1 (單一負載)濕竹纖維應變潛變試驗結果 67 4-3-2 (多重階段負載)濕竹纖維應變潛變試驗結果 69 4-3-3應變潛變數學模型擬合結果 70 4-4竹纖維鬆弛性質量測與模擬結果 72 4-4-1 (試驗變動條件:環境溫度)應力鬆弛試驗結果 72 4-4-2 (試驗變動條件:含水量)應力鬆弛試驗結果 76 4-4-3 (多重階段應變)應力鬆弛試驗結果 78 4-4-4應力鬆弛數學模型擬合結果 81 4-4-5鬆弛模型擬合潛變趨勢結果 90 第五章、結論與展望 91 5-1結論 91 5-2未來展望 93 參考文獻 94 附錄 98

    [1] R. Lakes and R. S. Lakes, Viscoelastic materials. Cambridge university press, 2009.
    [2] E. C. Ramires, J. D. Megiatto Jr, C. Gardrat, A. Castellan, and E. Frollini, "Biobased composites from glyoxal–phenolic resins and sisal fibers," Bioresource Technology, vol. 101, no. 6, pp. 1998-2006, 2010.
    [3] X. Li et al., "Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive," Bioresource technology, vol. 100, no. 14, pp. 3556-3562, 2009.
    [4] N. Reddy and Y. Yang, "Properties and potential applications of natural cellulose fibers from the bark of cotton stalks," Bioresource technology, vol. 100, no. 14, pp. 3563-3569, 2009.
    [5] P. K. Kushwaha and R. Kumar, "The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers," Journal of Reinforced Plastics and Composites, vol. 29, no. 13, pp. 1952-1962, 2010.
    [6] H. Takagi and Y. Ichihara, "Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers," JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 4, pp. 551-555, 2004.
    [7] R. S. Mbakop, G. Lebrun, and F. Brouillette, "Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers," Composites Part A: Applied Science and Manufacturing, vol. 109, pp. 604-614, 2018.
    [8] L. Osorio, E. Trujillo, A. W. Van Vuure, and I. Verpoest, "Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites," Journal of reinforced plastics and composites, vol. 30, no. 5, pp. 396-408, 2011.
    [9] P. Navi and S. Stanzl-Tschegg, "Micromechanics of creep and relaxation of wood. A review COST Action E35 2004–2008: Wood machining–micromechanics and fracture," 2009.
    [10] Y. Xu, Q. Wu, Y. Lei, and F. Yao, "Creep behavior of bagasse fiber reinforced polymer composites," Bioresource technology, vol. 101, no. 9, pp. 3280-3286, 2010.
    [11] C. Yu et al., "The effect of water on the creep behavior of red sandstone," Engineering Geology, vol. 253, pp. 64-74, 2019.
    [12] J. Gottron, K. A. Harries, and Q. Xu, "Creep behaviour of bamboo," Construction and Building Materials, vol. 66, pp. 79-88, 2014.
    [13] J. J. Janssen, Designing and building with bamboo. International Network for Bamboo and Rattan Netherlands, 2000.
    [14] E. Kanzawa, S. Aoyagi, and T. Nakano, "Vascular bundle shape in cross-section and relaxation properties of Moso bamboo (Phyllostachys pubescens)," Materials Science and Engineering: C, vol. 31, no. 5, pp. 1050-1054, 2011.
    [15] W. Yang, K. Zhao, H. Chen, S. Chen, and M. Ding, "Experimental study on the creep behavior of recombinant bamboo," Journal of Renewable Materials, vol. 8, no. 3, p. 251, 2020.
    [16] M. Nakajima, K. Kojiro, H. Sugimoto, T. Miki, and K. Kanayama, "Studies on bamboo for sustainable and advanced utilization," energy, vol. 36, no. 4, pp. 2049-2054, 2011.
    [17] I. Iida, K. Murase, and Y. Ishimaru, "Stress relaxation of wood during the elevating and lowering processes of temperature and the set after relaxation," Journal of wood science, vol. 48, no. 1, pp. 8-13, 2002.
    [18] P. Wang, L.-j. Wang, D. Li, Z.-g. Huang, B. Adhikari, and X. D. Chen, "The stress-relaxation behavior of rice as a function of time, moisture and temperature," International Journal of Food Engineering, vol. 13, no. 2, 2017.
    [19] S. Amada, Y. Ichikawa, T. Munekata, Y. Nagase, and H. Shimizu, "Fiber texture and mechanical graded structure of bamboo," Composites Part B: Engineering, vol. 28, no. 1-2, pp. 13-20, 1997.
    [20] A. C. Manalo, E. Wani, N. A. Zukarnain, W. Karunasena, and K.-t. Lau, "Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites," Composites Part B: Engineering, vol. 80, pp. 73-83, 2015.
    [21] M. Gutierrez and C. Maluk, "Mechanical behaviour of bamboo at elevated temperatures–Experimental studies," Engineering Structures, vol. 220, p. 110997, 2020.
    [22] M. Wakchaure and S. Kute, "Effect of moisture content on physical and mechanical properties of bamboo," 2012.
    [23] 呂錦明, 台灣竹圖鑑. 晨星出版, 2010.
    [24] 潘富俊, 福爾摩莎植物記: 101 種台灣植物文化圖鑑 &27 則台灣植物文化議題. 遠流出版社, 2007.
    [25] G. Chen, H. Luo, H. Yang, T. Zhang, and S. Li, "Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo," Acta biomaterialia, vol. 65, pp. 203-215, 2018.
    [26] M. J. John and R. D. Anandjiwala, "Recent developments in chemical modification and characterization of natural fiber‐reinforced composites," Polymer composites, vol. 29, no. 2, pp. 187-207, 2008.
    [27] 张长杰, 藤竹工. 东大图书, 1980.
    [28] S. Jain, R. Kumar, and U. Jindal, "Mechanical behaviour of bamboo and bamboo composite," Journal of materials science, vol. 27, no. 17, pp. 4598-4604, 1992.
    [29] X. Zhang, J. Fu, A. C. Paulo, C. Yu, and G. Guebitz, "Bioprocessing of bamboo materials," 2012.
    [30] M. Ashimori, T. Katayama, E. Aoyama, and S. Nagai, "Study on splitting of bamboo fibers due to freezing and tensile strength of FRTP using bamboo fibers," JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 47, no. 4, pp. 566-569, 2004.
    [31] P. K. Kushwaha and R. Kumar, "Studies on performance of acrylonitrile-pretreated bamboo-reinforced thermosetting resin composites," Journal of reinforced plastics and composites, vol. 29, no. 9, pp. 1347-1352, 2010.
    [32] V. Kaur, D. Chattopadhyay, and S. Kaur, "Study on extraction of bamboo fibres from raw bamboo fibres bundles using different retting techniques," Textiles and Light Industrial Science and Technology, vol. 2, no. 4, pp. 174-179, 2013.
    [33] J. X. HE, Y. Tang, and S. Y. WANG, "Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data," 2007.
    [34] A. P. Deshpande, M. Bhaskar Rao, and C. Lakshmana Rao, "Extraction of bamboo fibers and their use as reinforcement in polymeric composites," Journal of applied polymer science, vol. 76, no. 1, pp. 83-92, 2000.
    [35] I. Van de Weyenberg, T. C. Truong, B. Vangrimde, and I. Verpoest, "Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment," Composites Part A: Applied Science and Manufacturing, vol. 37, no. 9, pp. 1368-1376, 2006.
    [36] D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions. de Gruyter, 1983.
    [37] I. H. Shames, Elastic and inelastic stress analysis. CRC Press, 1997.
    [38] M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. Cambridge university press, 2008.
    [39] N. G. McCrum, C. Buckley, C. B. Bucknall, C. B. Bucknall, and C. Bucknall, Principles of polymer engineering. Oxford University Press, USA, 1997.
    [40] E. Barbero, "Time–temperature–age superposition principle for predicting long-term response of linear viscoelastic materials," in Creep and fatigue in polymer matrix composites: Elsevier, 2011, pp. 48-69.
    [41] P. Zakikhani, R. Zahari, M. Sultan, and D. Majid, "Extraction and preparation of bamboo fibre-reinforced composites," Materials & Design, vol. 63, pp. 820-828, 2014.
    [42] W. Liese, "Research on bamboo," Wood Science and Technology, vol. 21, no. 3, pp. 189-209, 1987.
    [43] M. Xu, Z. Cui, Z. Chen, and J. Xiang, "Experimental study on compressive and tensile properties of a bamboo scrimber at elevated temperatures," Construction and Building Materials, vol. 151, pp. 732-741, 2017.
    [44] M. Durante, A. Formisano, L. Boccarusso, A. Langella, and L. Carrino, "Creep behaviour of polylactic acid reinforced by woven hemp fabric," Composites Part B: Engineering, vol. 124, pp. 16-22, 2017.
    [45] O. Saifouni, J.-F. Destrebecq, J. Froidevaux, and P. Navi, "Experimental study of the mechanosorptive behaviour of softwood in relaxation," Wood science and technology, vol. 50, no. 4, pp. 789-805, 2016.
    [46] J. E. L. Pacheco, C. A. Bavastri, and J. T. Pereira, "Viscoelastic relaxation modulus characterization using Prony series," Latin American Journal of Solids and Structures, vol. 12, pp. 420-445, 2015.
    [47] S. C. Joshi, P. Manikandan, and Y. Jothi, "Enhancement studies on manufacturing and properties of novel silica aerogel composites," Gels, vol. 4, no. 1, p. 5, 2018
    [48] 邱宣豪, "連續竹纖維預型與竹纖維複合材料研究," 成功大學航空太空工程學系學位論文, pp. 1-170, 2019.
    [49] 王柏鈞, "編織竹蓆強化聚丙烯複合材料特性研究," 成功大學航空太空工程學系學位論文, pp. 1-125, 2020.
    [50] 周紫濃, "竹纖維拉伸強度之研究," 成功大學航空太空工程學系學位論文, pp. 1-49, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE