| 研究生: |
王督毅 Wang, Du-Yi |
|---|---|
| 論文名稱: |
透過多元接枝填料強化聚甲基丙烯酸甲酯之機械、磨潤及光學性能與其應用 Enhancement of the mechanical, tribological, and optical properties of poly(methyl methacrylate) through multi-grafted fillers and its potential applications |
| 指導教授: |
施士塵
Shi, Shih-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 環境友善 、功能性填料 、磨潤特性 、多元填料複合系統 |
| 外文關鍵詞: | functional fillers, tribological properties, multi-filler composite system |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. RESEARCH, M.M. Polymethyl Methacrylate Market – Global Industry Analysis and Forecast (2024-2030). 2024.
2. Dormer, A.; Finn, D.P.; Ward, P.; Cullen, J. Carbon footprint analysis in plastics manufacturing. Journal of Cleaner Production 2013, 51, 133-141.
3. Zheng, J.; Arifuzzaman, M.; Tang, X.; Chen, X.C.; Saito, T. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. Materials Horizons 2023, 10, 1608-1624.
4. Gamage, A.; Thiviya, P.; Liyanapathiranage, A.; Wasana, M.D.; Jayakodi, Y.; Bandara, A.; Manamperi, A.; Dassanayake, R.S.; Evon, P.; Merah, O. Polysaccharide-Based Bioplastics: Eco-Friendly and Sustainable Solutions for Packaging. Journal of Composites Science 2024, 8, 413.
5. Jha, S.; Akula, B.; Enyioma, H.; Novak, M.; Amin, V.; Liang, H. Biodegradable biobased polymers: a review of the state of the art, challenges, and future directions. Polymers 2024, 16, 2262.
6. Meisel, K.; Röver, L.; Majer, S.; Herklotz, B.; Thrän, D. A Comparison of Functional Fillers—Greenhouse Gas Emissions and Air Pollutants from Lignin-Based Filler, Carbon Black and Silica. Sustainability 2022, 14, 5393.
7. Merghes, P.; Ilia, G.; Maranescu, B.; Varan, N.; Simulescu, V. The Sol–Gel Process, a Green Method Used to Obtain Hybrid Materials Containing Phosphorus and Zirconium. Gels 2024, 10, 656.
8. Xu, D.; He, S.; Leng, W.; Chen, Y.; Wu, Z. Replacing plastic with bamboo: a review of the properties and green applications of bamboo-fiber-reinforced polymer composites. Polymers 2023, 15, 4276.
9. Kulas, D.G.; Thies, M.C.; Shonnard, D.R. Techno-economic analysis and life cycle assessment of waste lignin fractionation and valorization using the ALPHA process. ACS Sustainable Chemistry & Engineering 2021, 9, 5388-5395.
10. Shak, K.P.Y.; Pang, Y.L.; Mah, S.K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein journal of nanotechnology 2018, 9, 2479-2498.
11. Nitodas, S.; Skehan, M.; Liu, H.; Shah, R. Current and potential applications of green membranes with nanocellulose. Membranes 2023, 13, 694.
12. Errington, E.; Heng, J.; Guo, M. Preparation of Silica By Sol-Gel Methods: How Sustainable Are Current Research Methods? In Proceedings of the 2023 AIChE Annual Meeting, 2023.
13. Vigneshwaran, S.; Sundarakannan, R.; John, K.; Johnson, R.D.J.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 2020, 277, 124109.
14. Shin, K.-Y.; Hong, J.-Y.; Lee, S.; Jang, J. Evaluation of anti-scratch properties of graphene oxide/polypropylene nanocomposites. Journal of Materials Chemistry 2012, 22, 7871-7879.
15. Dong, H.; Bell, T. State-of-the-art overview: ion beam surface modification of polymers towards improving tribological properties. Surface and Coatings Technology 1999, 111, 29-40.
16. Shah, T.; Gupta, C.; Ferebee, R.L.; Bockstaller, M.R.; Washburn, N.R. Extraordinary toughening and strengthening effect in polymer nanocomposites using lignin-based fillers synthesized by ATRP. Polymer 2015, 72, 406-412.
17. Das, B.; Prasad, K.E.; Ramamurty, U.; Rao, C. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 2009, 20, 125705.
18. Liu, Z.; Du, Y.; Ma, H.; Li, J.; Zhang, X.; Zhu, E.; Shi, C.; Zhu, Z.; Zhao, S. Mechanism of boron carbide particles improving the wear resistance of UHMWPE: Structure-property relationship. Polymer 2022, 245, 124733.
19. Shi, W.; Li, X.; Dong, H. Improved wear resistance of ultra-high molecular weight polyethylene by plasma immersion ion implantation. Wear 2001, 250, 544-552.
20. San, J.; Zhu, B.; Liu, J.; Liu, Z.; Dong, C.; Zhang, Q. Mechanical properties of ion-implanted polycarbonate. Surface and Coatings Technology 2001, 138, 242-249.
21. Macuvele, D.L.P.; Nones, J.; Matsinhe, J.V.; Lima, M.M.; Soares, C.; Fiori, M.A.; Riella, H.G. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Materials Science and Engineering: C 2017, 76, 1248-1262.
22. Wang, H.; Quan, J.; Yu, J.; Zhu, J.; Wang, Y.; Hu, Z. Enhanced wear resistance of ultra‐high molecular weight polyethylene fibers by modified‐graphite oxide. Journal of Applied Polymer Science 2021, 138, 50696.
23. Selvam, D.; Vasudevan, K.; Rizwana, N.; Selvam, D. Enhancement of Flexural Strength in Polymethylmethacrylate (PMMA) Through the Incorporation of Graphene Nanoparticles: A Comparative In Vitro Study. 2024.
24. Hamdy, T.M. Evaluation of flexural strength, impact strength, and surface microhardness of self-cured acrylic resin reinforced with silver-doped carbon nanotubes. BMC Oral Health 2024, 24, 151.
25. Ardakani, Z.H.; Giti, R.; Dabiri, S.; Hosseini, A.H.; Moayedi, M. Flexural strength of polymethyl methacrylate reinforced with high-performance polymer and metal mesh. Dental research journal 2021, 18, 30.
26. Shi, G.; Cao, Z.; Yan, X.; Wang, Q. In-situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance. Materials Chemistry and Physics 2019, 236, 121778.
27. Li, K.; Zhang, X.; Du, C.; Yang, J.; Wu, B.; Guo, Z.; Dong, C.; Lin, N.; Yuan, C. Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil. Carbohydrate polymers 2019, 220, 228-235.
28. Martínez-Pérez, A.; Vera-Cárdenas, E.; Luna-Bárcenas, G.; Pérez-Robles, J.; Mauricio-Sánchez, R. Characterization and sliding wear performance of PMMA reinforced with SiO2 nanoparticles. Journal of Thermoplastic Composite Materials 2020, 33, 867-881.
29. Del Grosso, M.; Chappa, V.; Bermudez, G.G.; Forlerer, E.; Behar, M. Surface characterization of ultra high molecular weight polyethylene modified by swift heavy ion beam bombardment. Surface and Coatings Technology 2008, 202, 4227-4232.
30. Rao, G.; Monar, K.; Lee, E.; Treglio, J. Metal ion implantation effects on surface properties of polymers. Surface and Coatings Technology 1994, 64, 69-74.
31. Jian, Y.; Ning, H.; Huang, Z.; Wang, Y.; Xing, J. Three-body abrasive wear behaviors and mechanism analysis of Fe–B–C cast alloys with various Mn contents. Journal of Materials Research and Technology 2021, 14, 1301-1311.
32. Deng, X.; Huang, L.; Wang, Q.; Fu, T.; Wang, Z. Three-body abrasion wear resistance of TiC-reinforced low-alloy abrasion-resistant martensitic steel under dry and wet sand conditions. Wear 2020, 452, 203310.
33. Ashraf, M.A.; Peng, W.; Zare, Y.; Rhee, K.Y. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale research letters 2018, 13, 1-7.
34. Bakshi, S.; Balani, K.; Laha, T.; Tercero, J.; Agarwal, A. The nanomechanical and nanoscratch properties of MWNT-reinforced ultrahigh-molecular-weight polyethylene coatings. Jom 2007, 59, 50-53.
35. Shanti, R.; Hadi, A.; Salim, Y.; Chee, S.; Ramesh, S.; Ramesh, K. Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC advances 2017, 7, 112-120.
36. Gautam, A.; Kshirsagar, A.; Banerjee, S.; Dhapte, V.; Khanna, P. UVC-shielding by nano-TiO 2/PMMA composite: A chemical approach. J Mater Sci Nanotechnol 2016, 4, 1-14.
37. Bisht, A.; Kumar, V.; Maity, P.C.; Lahiri, I.; Lahiri, D. Strong and transparent PMMA sheet reinforced with amine functionalized BN nanoflakes for UV-shielding application. Composites Part B: Engineering 2019, 176, 107274.
38. Arif, S.; Rafique, M.S.; Saleemi, F.; Sagheer, R.; Naab, F.; Toader, O.; Mahmood, A.; Rashid, R.; Mahmood, M. Influence of 400ákeV carbon ion implantation on structural, optical and electrical properties of PMMA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015, 358, 236-244.
39. Su’ad, D.A.; Ismail, I.M. PMMA degradation protection investigation using ultraviolet additive. Oriental Journal of Chemistry 2008, 24, 35-42.
40. Hashim, A. Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for photodegradation of organic dyes. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31, 2483-2491.
41. Reyes-Acosta, M.A.; Torres-Huerta, A.M.; Domínguez-Crespo, M.A.; Flores-Vela, A.I.; Dorantes-Rosales, H.J.; Andraca-Adame, J.A. Thermal, mechanical and UV-shielding properties of poly (methyl methacrylate)/cerium dioxide hybrid systems obtained by melt compounding. Polymers 2015, 7, 1638-1659.
42. Al-Bataineh, Q.M.; Ahmad, A.A.; Alsaad, A.; Telfah, A.D. Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon 2021, 7.
43. El-Hiti, G.A.; Ahmed, D.S.; Yousif, E.; Al-Khazrajy, O.S.; Abdallh, M.; Alanazi, S.A. Modifications of polymers through the addition of ultraviolet absorbers to reduce the aging effect of accelerated and natural irradiation. Polymers 2021, 14, 20.
44. Fink, D.; Chadderton, L.; Hosoi, F.; Omichi, H.; Sasuga, T.; Schmoldt, A.; Wang, L.; Klett, R.; Hillenbrand, J. Chemical modification of PMMA by MeV and GeV, light and heavy, ion irradiations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1994, 91, 146-150.
45. Lee, E.H. Ion-beam modification of polymeric materials–fundamental principles and applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1999, 151, 29-41.
46. Gupta, S.; Choudhary, D.; Sarma, A. Study of carbonaceous clusters in irradiated polycarbonate with UV–vis spectroscopy. Journal of Polymer Science Part B: Polymer Physics 2000, 38, 1589-1594.
47. Resta, V.; Calcagnile, L.; Quarta, G.; Maruccio, L.; Cola, A.; Farella, I.; Giancane, G.; Valli, L. Optical and electrical properties of polycarbonate layers implanted by high energy Cu ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2013, 312, 42-47.
48. Davenas, J.; Massardier, V.; Van Hoang, T. Relation between optical and electrical properties of ion implanted PPV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1993, 83, 189-195.
49. Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 2020, 10, 1334.
50. Bikiaris, D. Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochimica Acta 2011, 523, 25-45.
51. Zhang, J.; Fan, Z.; Li, B.; Ren, D.; Xu, M. Study on Structure–Function Integrated Polymer-Based Microwave-Absorption Composites. Polymers 2024, 16, 2472.
52. Lu, S.; Xia, L.; Xu, J.; Ding, C.; Li, T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L.; Xiong, L. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS applied materials & interfaces 2019, 11, 18626-18636.
53. Sun, X.; Xie, M.; Mai, L.; Zeng, E.Y. Biobased plastic: A plausible solution toward carbon neutrality in plastic industry? Journal of Hazardous Materials 2022, 435, 129037.
54. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28, 1721-1723.
55. Ślusarczyk, K.; Flejszar, M.; Chmielarz, P. Less is more: A review of μL-scale of SI-ATRP in polymer brushes synthesis. Polymer 2021, 233, 124212.
56. Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products 2019, 139, 111526.
57. Obasa, V.D.; Olanrewaju, O.A.; Gbenebor, O.P.; Ochulor, E.F.; Odili, C.C.; Abiodun, Y.O.; Adeosun, S.O. A review on lignin-based carbon fibres for carbon footprint reduction. Atmosphere 2022, 13, 1605.
58. Thomas, B.; Raj, M.C.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical reviews 2018, 118, 11575-11625.
59. Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment 2021, 775, 145871.
60. Nascimento, N.R.d.; Pinheiro, I.F.; Alves, G.F.; Mei, L.H.I.; Macedo Neto, J.C.d.; Morales, A.R. Role of cellulose nanocrystals in epoxy-based nanocomposites: Mechanical properties, morphology and thermal behavior. Polímeros 2022, 31, e2021034.
61. Song, H.; Zheng, L. Nanocomposite films based on cellulose reinforced with nano-SiO2: microstructure, hydrophilicity, thermal stability, and mechanical properties. Cellulose 2013, 20, 1737-1746.
62. Raymer, D.M.; Smith, D.E. Spontaneous knotting of an agitated string. Proceedings of the National Academy of Sciences 2007, 104, 16432-16437.
63. Wang, Y.; Kalscheur, J.; Ebikade, E.; Li, Q.; Vlachos, D.G. LigninGraphs: lignin structure determination with multiscale graph modeling. Journal of cheminformatics 2022, 14, 43.
64. Godet, M. Third-bodies in tribology. Wear 1990, 136, 29-45.
65. Godet, M. The third-body approach: a mechanical view of wear. Wear 1984, 100, 437-452.
66. Berthier, Y. Experimental evidence for friction and wear modelling. Wear 1990, 139, 77-92.
67. Iordanoff, I.; Berthier, Y.; Descartes, S.; Heshmat, H. A review of recent approaches for modeling solid third bodies. Journal of Tribology 2002, 124, 725-735.
68. Descartes, S.; Berthier, Y. Rheology and flows of solid third bodies: background and application to an MoS1. 6 coating. Wear 2002, 252, 546-556.
69. Young, A.T. Rayleigh scattering. Applied optics 1981, 20, 533-535.
70. Abitbol, T.; Ahniyaz, A.; Álvarez-Asencio, R.; Fall, A.; Swerin, A. Nanocellulose-based hybrid materials for UV blocking and mechanically robust barriers. ACS Applied Bio Materials 2020, 3, 2245-2254.
71. Lin, M.; Yang, L.; Zhang, H.; Xia, Y.; He, Y.; Lan, W.; Ren, J.; Yue, F.; Lu, F. Revealing the structure-activity relationship between lignin and anti-UV radiation. Industrial crops and products 2021, 174, 114212.
72. Obrzut, J.; Emiroglu, C.D.; Pazmino, B.A.; Douglas, J.F.; Gilman, J.W. Characterization of dielectric properties and moisture uptake of cellulose nanocrystals using non-contact microwave cavity. 2016.
73. Xu, H.; Qiu, F.; Han, W.; Xue, Z. Study on the Effect of Lignin Removal Rate on the Dielectric Properties of Delignified Materials. Coatings 2024, 14, 1421.
74. Xia, Y.; Chen, J.; Zhu, Z.; Zhang, Q.; Yang, H.; Wang, Q. Significantly enhanced dielectric and hydrophobic properties of SiO 2@ MgO/PMMA composite films. RSC advances 2018, 8, 4032-4038.
75. Schiele, C.; Di, A.; Hadi, S.E.; Rangaiah, P.K.; Augustine, R.; Bergström, L. Hybrid Foams based on Multi‐Walled Carbon Nanotubes and Cellulose Nanocrystals for Anisotropic Electromagnetic Shielding and Heat Transport. Advanced Materials Interfaces 2024, 11, 2300996.
76. Hollertz, R.; Wågberg, L.; Pitois, C. Kraft-pulp based material for electrical insulation. In Proceedings of the Proceedings of the Nordic Insulation Symposium, 2015.
77. Du, Z.; Zhou, C.; Zhang, H.; Zhao, R. Co-Ni doped lignin-derived carbon-based materials with “mosaic” structure for efficient microwave absorption. Materials Letters 2025, 138215.
78. 蔡孝寧. 藉由空間位阻機制製備穩定的金屬或金屬氧化物奈米粒子與 HPMC 之複合溶液及 HPMC 複合膜的負載能力, 巨觀磨潤行為之研究. 2018.
79. Steiner, G.; Zimmerer, C.; Salzer, R. Characterization of metal-supported poly (methyl methacrylate) microstructures by FTIR imaging spectroscopy. Langmuir 2006, 22, 4125-4130.
80. Zong, E.; Liu, X.; Liu, L.; Wang, J.; Song, P.; Ma, Z.; Ding, J.; Fu, S. Graft polymerization of acrylic monomers onto lignin with CaCl2–H2O2 as initiator: preparation, mechanism, characterization, and application in poly (lactic acid). ACS Sustainable Chemistry & Engineering 2018, 6, 337-348.
81. Liu, Y.; Zhou, L.; Wang, L.; Pan, X.; Wang, K.; Shu, J.; Liu, L.; Zhang, H.; Lin, L.; Shi, X. Air-dried porous powder of polymethyl methacrylate modified cellulose nanocrystal nanocomposite and its diverse applications. Composites Science and Technology 2020, 188, 107985.
82. PET, P.T. Eco-profiles of the European plastics industry. Sea 2003, 370000, 3800000.
83. Khripko, D.; Schlüter, B.A.; Rommel, B.; Rosano, M.; Hesselbach, J. Energy demand and efficiency measures in polymer processing: comparison between temperate and Mediterranean operating plants. International Journal of Energy and Environmental Engineering 2016, 7, 225-233.
84. Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production 2016, 135, 1085-1097.
85. 環境部-產品碳足跡資訊網-碳足跡資料庫. https://cfp-calculate.tw/cfpc/WebPage/WebSites/CoefficientDB.aspx.
86. Slater, C.S.; Savelski, M.J.; Hitchcock, D.; Cavanagh, E.J. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources. Journal of Environmental Science and Health, Part A 2016, 51, 487-494.
87. Interim LCA and LCCA report based upon.
88. Nguyen, T.T.; Putro, W.S.; Hamura, S.; Nakashige, M.; Choi, J.-C.; Fukaya, N.; Taniguchi, S.; Yamaki, T.; Hara, N.; Kataoka, S. Comparative techno-economic and environmental analysis of a new CO2 to diethyl carbonate production process. Journal of Cleaner Production 2023, 389, 136046.
89. Ammonia (NH3). https://apps.carboncloud.com/climatehub/product-reports/id/146351392069.
90. Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Science of the Total Environment 2021, 770, 144656.
91. Rispoli, A.L.; Tizzano, C.; Verdone, N.; Segneri, V.; Vilardi, G. Sustainable production of hydrogen, pyridine and biodiesel from waste-to-chemicals valorization plant: Energy, exergy and CO2-cycle analysis. Journal of Cleaner Production 2023, 425, 139051.
92. Kane, S.; Miller, S.A.; Kurtis, K.E.; Youngblood, J.P.; Landis, E.N.; Weiss, W.J. Harmonized life-cycle inventories of nanocellulose and its application in composites. Environmental Science & Technology 2023, 57, 19137-19147.
93. Europe, P. Carbon footprint range of organosilicon compounds or silane coupling agents.
94. Rao, A.; Divoux, T.; Owens, C.E.; Hart, A.J. Printable, castable, nanocrystalline cellulose-epoxy composites exhibiting hierarchical nacre-like toughening. Cellulose 2022, 29, 2387-2398.
95. Wang, R.; Xiong, Y.; Yang, K.; Zhang, T.; Zhang, F.; Xiong, B.; Hao, Y.; Zhang, H.; Chen, Y.; Tang, J. Advanced progress on the significant influences of multi-dimensional nanofillers on the tribological performance of coatings. RSC advances 2023, 13, 19981-20022.
96. Pajer, N.; Cestari, C.; Argyropoulos, D.S.; Crestini, C. From lignin self assembly to nanoparticles nucleation and growth: A critical perspective. npj Materials Sustainability 2024, 2, 31.
97. Hilburg, S.L.; Elder, A.N.; Chung, H.; Ferebee, R.L.; Bockstaller, M.R.; Washburn, N.R. A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer 2014, 55, 995-1003.
98. 李伯奎. 三维粗糙度参数算术平均偏差与均方根偏差的规律研究. 工具技术 2008, 42, 107-110.
99. Liu, S.; Islam, M.D.; Ku, Z.; Boyd, D.A.; Zhong, Y.; Urbas, A.M.; Smith, E.; Derov, J.; Nguyen, V.Q.; Kim, W. Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. Composites Part B: Engineering 2021, 223, 109128.
100. Sirviö, J.A.; Visanko, M.; Heiskanen, J.P.; Liimatainen, H. UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. Journal of Materials Chemistry A 2016, 4, 6368-6375.
101. Pratap, D.; Gautam, R.; Shaw, A.K.; Soni, S. Photothermal properties of stable aggregates of gold nanorods. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 635, 128054.
102. Wu, X.; Lian, H.; Li, X. An ultraviolet shielding material based on lignin nanoparticles engineered with deep eutectic solvents for long-term outdoor application. Journal of Cleaner Production 2023, 430, 139694.
103. Kim, Y.; Kwon, Y.J.; Ryu, S.; Lee, C.J.; Lee, J.U. Preparation of nanocomposite-based high performance organic field effect transistor via solution floating method and mechanical property evaluation. Polymers 2020, 12, 1046.
104. Padurariu, L.; Brunengo, E.; Canu, G.; Curecheriu, L.P.; Conzatti, L.; Buscaglia, M.T.; Stagnaro, P.; Mitoseriu, L.; Buscaglia, V. Role of microstructures in the dielectric properties of PVDF-based nanocomposites containing high-permittivity fillers for energy storage. ACS Applied Materials & Interfaces 2023, 15, 13535-13544.
105. Rehim, M.H.A.; Turky, G.M. UV-blocking and dielectric properties of polyethersulfone/nanolignin composites. Results in Surfaces and Interfaces 2024, 17, 100324.
106. Wang, Q.; Che, J.; Wu, W.; Hu, Z.; Liu, X.; Ren, T.; Chen, Y.; Zhang, J. Contributing factors of dielectric properties for polymer matrix composites. Polymers 2023, 15, 590.
107. Shen, H.; Shi, X.; Wang, Z.; Zou, P.; Hou, Z.; Xu, C.; Zhang, L.; Wu, H. Interfacial polarization-dominated dielectric loss in SnO2@ rGO electromagnetic wave absorbers. Metals 2022, 12, 2154.
108. Huang, B.; Yu, Y.; Zhao, Y.; Zhao, Y.; Dai, L.; Zhang, Z.; Fei, H.-F. Al@ SiO2 Core–Shell Fillers Enhance Dielectric Properties of Silicone Composites. ACS omega 2023, 8, 35275-35282.
109. Herrmann, W.A. Synthetic methods of organometallic and inorganic chemistry:(Herrmann/Brauer); Georg Thieme Verlag: 1996; Volume 5.
110. Emission factors in kg CO2-equivalent per unit. https://www.winnipeg.ca/finance/findata/matmgt/documents/2012/682-2012/682-2012_appendix_h-wstp_south_end_plant_process_selection_report/appendix%207.pdf.
111. John R. Ruhoff, R.E.B., and E. Emmet Reid. Hydrogen Bromide (Anhydrous). 1935, 15, p.35.
112. Product Carbon Footprints. Available online: https://2021.icl-group-sustainability.com/reports/carbonfootprints/ (accessed on
校內:2030-08-20公開