| 研究生: |
王信堯 Wang, Shin-Yau |
|---|---|
| 論文名稱: |
單車與電動輔助自行車替代燃油機車通勤之環境與健康效益分析-以 YouBike 系統為例 Environmental and health benefits analysis of replacing internal combustion engine motorcycles with bicycles and e-bikes for commuting: A case study of YouBike system |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 溫室氣體 、空氣汙染 、YouBike 、相對風險 、貨幣化 |
| 外文關鍵詞: | Greenhouse gas, air pollution, YouBike, relative risk, monetization |
| 相關次數: | 點閱:163 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著交通技術愈發進步,各式運具所產生的溫室氣體排放量成長逐年增長。2021年臺灣運輸部門所排放之溫室氣體量達到3674萬公噸,是六大部門中排名第二,顯示運輸部門減碳行動刻不容緩。除溫室氣體,燃油運具所產生之懸浮微粒、硫氧化物、氮氧化物等空氣汙染物對人體健康之影響亦不容小覷。為了降低使用燃油運具所產生的溫室氣體排放及空氣汙染物,達到減少碳排、提升民眾健康效益,自行車與電動輔助自行車是替代燃油運具中燃油機車通勤之利器。本研究選定公共自行車YouBike 2.0與YouBike 2.0E電動輔助自行車作為研究標的,建立自行車與電動輔助自行車替代燃油機車減少碳排模型,利用相對風險概念建立騎乘自行車身體活動健康效益,與攝入空氣污染物之風險評估模型。最後再將騎乘自行車通勤減少碳排放之環境效益,與騎乘自行車通勤促進健康之效益進行貨幣化處理。
研究結果顯示: 騎乘自行車替代燃油機車通勤,因身體活動而減少的死亡風險介於12.371%~13.575%;因攝入空氣汙染物相較騎乘燃油機車增加了3.90%~7.22%之死亡風險,健康效益與風險損益兩平時長介於34~45小時/年(每日7.84~10.38分鐘),每人每年貨幣化後之健康效益介於NT$7,002.98~NT$10,446.08之間,因縣市而異;環境效益部分每人每年減少排放1.64753公噸二氧化碳當量之溫室氣體,貨幣化環境效益約為NT$2,486.30。騎乘電動輔助自行車通勤,因身體活動而減少的死亡風險介於14.701%~15.58%;因攝入空氣汙染物相較騎乘燃油機車增加了6.02%~6.90%之死亡風險,健康效益與風險損益兩平時長介於61~75小時/年(每日14.07~17.3分鐘),每人每年貨幣化後之健康效益介於NT$8591.05~NT$10,544.08;環境效益部分每人每年減少排放1.6127公噸二氧化碳當量之溫室氣體,貨幣化環境效益約為NT$2,419.06。
藉由量化騎乘自行車取代燃油機車通勤所產生的環境與健康效益,期望能為個人、政府機關提供選擇運具、制定政策之參考。
關鍵字:溫室氣體、空氣汙染、YouBike、相對風險、貨幣化
This study analyzes the health and environmental benefits of using bicycles and e-bikes to replace motorcycles for commuting. By establishing a model for carbon emission reduction by replacing motorcycles, and by using the relative risk concept to establish a model for health benefits of bicycle physical activity and risk assessment of air pollutant intake. Finally, monetized the environmental benefits of bicycle commuting in terms of carbon emission reduction and the health promotion benefits of bicycle commuting.
The research shows that: replace motorcycles with bicycles for commuting results in a reduction in mortality risk due to physical activity, ranging from 12.371% to 13.575%, For commuting with e-bikes, ranges from 14.701% to 15.58%. However, there is an increased mortality risk of 3.90% to 7.22% for bicycles and 6.02% to 6.90% for e-bikes due to exposure to air pollution compared to riding motorcycles. The breakeven duration for the health benefits of cycling ranges from 34 to 75 hours per year, equivalent to approximately 7.84 to 17.3 minutes per day. The monetized health benefits per person per year range from NT$7,002.98 to NT$10,446.08 for bicycles and NT$8,591.05 to NT$10,544.08 for e-bikes varying across different cities. In terms of environmental benefits, there is a reduction of 1.64753 metric tons CO2e for bicycles and 1.6127 metric tons CO2e GHG emissions for e-bikes per person per year, with a monetized environmental benefit of approximately NT$2,486.30 for bicycles and NT$2,419.06 for e-bikes.
Arphorn, S., Ishimaru, T., Hara, K., & Mahasandana, S. (2018). Considering the effects of ambient particulate matter on the lung function of motorcycle taxi drivers in Bangkok, Thailand. Journal of the Air & Waste Management Association, 68(2), 139-145. https://doi.org/10.1080/10962247.2017.1359217
Carranza, G., Do Nascimiento, M., Fanals, J., Febrer, J., & Valderrama, C. (2022). Life cycle assessment and economic analysis of the electric motorcycle in the city of Barcelona and the impact on air pollution. Science of The Total Environment, 821, 153419. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153419
Chen, J., Zhou, D., Zhao, Y., Wu, B., & Wu, T. (2020). Life cycle carbon dioxide emissions of bike sharing in China: Production, operation, and recycling. Resources, Conservation and Recycling, 162, 105011. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105011
Chernyshev, V. V., Zakharenko, A. M., Ugay, S. M., Hien, T. T., Hai, L. H., Kholodov, A. S., Burykina, T. I., Stratidakis, A. K., Mezhuev, Y. O., Tsatsakis, A. M., & Golokhvast, K. S. (2018). Morphologic and chemical composition of particulate matter in motorcycle engine exhaust. Toxicology Reports, 5, 224-230. https://doi.org/https://doi.org/10.1016/j.toxrep.2018.01.003
Chuang, K.-J., Lin, L.-Y., Ho, K.-F., & Su, C.-T. (2020). Traffic-related PM2.5 exposure and its cardiovascular effects among healthy commuters in Taipei, Taiwan. Atmospheric Environment: X, 7, 100084. https://doi.org/https://doi.org/10.1016/j.aeaoa.2020.100084
Garcia, L., Johnson, R., Johnson, A., Abbas, A., Goel, R., Tatah, L., Damsere-Derry, J., Kyere-Gyeabour, E., Tainio, M., de Sá, T. H., & Woodcock, J. (2021). Health impacts of changes in travel patterns in Greater Accra Metropolitan Area, Ghana. Environment International, 155, 106680. https://doi.org/https://doi.org/10.1016/j.envint.2021.106680
Huang, Y., Jiang, L., Chen, H., Dave, K., & Parry, T. (2022). Comparative life cycle assessment of electric bikes for commuting in the UK. Transportation Research Part D: Transport and Environment, 105, 103213. https://doi.org/https://doi.org/10.1016/j.trd.2022.103213
ISO.(2006). ISO 14040:2006Environmental Management — Life Cycle Assessment — Principles and Framework. Retrieved Aug 25, 2022, from https://www.iso.org/standard/37456.html
ISO.(2006). ISO 14044:2006 Environmental Management — Life Cycle Assessment — Requirements and Guidelines. Retrieved Aug 25, 2022, from https://www.iso.org/standard/38498.html
Kubesch, N. J., de Nazelle, A., Westerdahl, D., Martinez, D., Carrasco-Turigas, G., Bouso, L., Guerra, S., & Nieuwenhuijsen, M. J. (2015). Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occupational and Environmental Medicine, 72(4), 284. https://doi.org/10.1136/oemed-2014-102106
Liang, Y., Su, J., Xi, B., Yu, Y., Ji, D., Sun, Y., Cui, C., & Zhu, J. (2017). Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resources, Conservation and Recycling, 117, 285-293.
https://doi.org/https://doi.org/10.1016/j.resconrec.2016.08.028
Liu, W.-T., Ma, C.-M., Liu, I. J., Han, B.-C., Chuang, H.-C., & Chuang, K.-J. (2015). Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. International Journal of Hygiene and Environmental Health, 218(3), 319-323. https://doi.org/https://doi.org/10.1016/j.ijheh.2015.01.003
Luo, H., Kou, Z., Zhao, F., & Cai, H. (2019). Comparative life cycle assessment of station-based and dock-less bike sharing systems. Resources, Conservation and Recycling, 146, 180-189. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.03.003
Marmett, B., Pires Dorneles, G., Böek Carvalho, R., Peres, A., Roosevelt Torres Romão, P., Barcos Nunes, R., & Ramos Rhoden, C. (2021). Air pollution concentration and period of the day modulates inhalation of PM2.5 during moderate- and high-intensity interval exercise. Environmental Research, 194, 110528. https://doi.org/https://doi.org/10.1016/j.envres.2020.110528
Philips, I., Anable, J., & Chatterton, T. (2022). E-bikes and their capability to reduce car CO2 emissions. Transport Policy, 116, 11-23. https://doi.org/https://doi.org/10.1016/j.tranpol.2021.11.019
Rodríguez, R., & Pérez, F. (2021). Carbon foot print evaluation in tunneling construction using conventional methods. Tunnelling and Underground Space Technology, 108, 103704. https://doi.org/https://doi.org/10.1016/j.tust.2020.103704
Rojas-Rueda, D., de Nazelle, A., Tainio, M., & Nieuwenhuijsen, M. J. (2011). The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ, 343, d4521. doi:10.1136/bmj.d4521
Tainio, M., de Nazelle, A. J., Götschi, T., Kahlmeier, S., Rojas-Rueda, D., Nieuwenhuijsen, M. J., de Sá, T. H., Kelly, P., & Woodcock, J. (2016). Can air pollution negate the health benefits of cycling and walking? Preventive Medicine, 87, 233-236. https://doi.org/https://doi.org/10.1016/j.ypmed.2016.02.002
The Meddin Bike-sharing World Map. (2022) Retrieved Oct 10,2022, from
https://bikesharingworldmap.com/index.php#/all/2.6/0/51.5/
UNFCCC. (2022).Kyoto Protocol. Retrieved Sep 9, from https://unfccc.int/kyoto_protocol
Vanatta, M., Rathod, B., Calzavara, J., Courtright, T., Sims, T., Saint-Sernin, É., Clack, H., Jagger, P., & Craig, M. (2022). Emissions impacts of electrifying motorcycle taxis in Kampala, Uganda. Transportation Research Part D: Transport and Environment, 104, 103193. https://doi.org/https://doi.org/10.1016/j.trd.2022.103193
Vitta, S. (2021). Electric cars – Assessment of ‘green’ nature vis-à-vis conventional fuel driven cars. Sustainable Materials and Technologies, 30, e00339. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00339
Woodcock, J., Givoni, M., & Morgan, A. S. (2013). Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLOS ONE, 8(1), e51462. https://doi.org/10.1371/journal.pone.0051462
World Health Organization(2020). Guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020. Retrieved Oct 1, 2022 from
https://apps.who.int/iris/bitstream/handle/10665/336656/9789240015128-eng.pdf?sequence=1&isAllowed=y
World Health Organization(2021). Health economic assessment tool (HEAT) for walking and for cycling. Retrieved Sep 7, 2022, from
https://www.who.int/publications/i/item/health-economic-assessment-tool-(heat)-for-walking-and-for-cycling
Wang, S., Wang, H., Xie, P., & Chen, X. (2021). Life-Cycle Assessment of Carbon Footprint of Bike-Share and Bus Systems in Campus Transit. Sustainability, 13(1). https://doi.org/10.3390/su13010158
Wu, M., Yu, L., Li, T., Lu, J., Yang, Z., Shen, P., Tang, M., Jin, M., Lin, H., Chen, K., & Wang, J. (2022). Association between short-term exposure to air pollution and ischemic stroke: A case-crossover study in China. Atmospheric Environment, 283, 119173. https://doi.org/https://doi.org/10.1016/j.atmosenv.2022.119173
唐達言(2014)。都市公共自行車系統之健康經濟效益評估。國立臺灣大學土木工程學研究所碩士論文,臺北市。 2022年9月5日,取自https://hdl.handle.net/11296/3cw8r2
臺灣睡眠醫學學會(2017)。2017 臺灣常見睡眠問題盛行率的變化趨勢:
一個十年的橫斷性重覆調查。2022年9月8日,取自https://tssm.org.tw/file/1494489550.pdf
廖洵顏(2018)。都市公共自行車健康影響評估-以臺北市Youbike為例。國立臺灣大學土木工程學研究所碩士論文,臺北市。2022年9月13日,取自https://hdl.handle.net/11296/5pq4u6
行政院環境保護署(2019)。臺灣空氣污染物排放量清冊。空氣品質改善維護資訊網。 2022年9月,取自https://air.epa.gov.tw/EnvTopics/AirQuality_6.aspx
周榮昌,邱裕鈞,郭仲偉,王明智,陳孜穎,謝志偉,張開國,葉祖宏與陳凱斌(2019)。道路交通事故成本推估之研究。交通部運輸研究所。2022年9月18日,取自https://www.iot.gov.tw/cp-78-200042-27e17-1.html
經濟部能源局(2020)。我國燃料燃燒二氧化碳排放統計與分析。2022年9月1日,取自
https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=114
全國法規資料庫(2022)。<<電動輔助自行車及電動自行車型式安全審驗管理辦法>>。中華民國法務部。2022年9月4日,取自
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040068
微笑單車官網(2022)。臺北市歷年YouBike公共自行車租借次數。微笑單車股份有限公司。2022年10月11日,取自https://www.youbike.com.tw/region/main/
交通部運輸研究所(2016)。機車動態能耗與碳排放係數。政府資料開放平臺。2023年3月01日,取自https://data.gov.tw/dataset/33215
衛生福利部統計處(2021)。110年死因統計結果分析。衛生福利部統計處官網。2023年02月15日,取自https://dep.mohw.gov.tw/DOS/lp-5069-113-xCat-y110.html
交通部統計處(2021)。機車使用狀況調查。交通部全球資訊網。2023年02月17日,取自https://www.motc.gov.tw/ch/app/data/doc?id=56&module=survey&detailNo=1&serno=202110060001&type=s
經濟部能源局(2022)。110年度電力碳排放係數。經濟部能源局官網。2023年3月10日,取自https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=10994
微笑單車股份有限公司(2023)。YouBike2.0E續航里程。微笑單車官網。2023年3月03日,取自https://www.youbike.com.tw/region/main/faq/
校內:2028-07-13公開