簡易檢索 / 詳目顯示

研究生: 林仲文
Lin, Jhong-wun
論文名稱: 反算法於蛇形質子交換膜燃料電池流道最佳化設計-理論與實驗之研究
An inverse design problem in determining the optimal shape for serpentine fuel channels in PEMFC-Theoretical and Experimental studies
指導教授: 黃正弘
Huang, Cheng-hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 最佳化設計拉凡格式法燃料電池反算問題蛇形雲形線
外文關鍵詞: optimal design, fuel cell, serpentine, Levenberg-Marquardt Method, inverse problem, B-spline
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要的目的在於利用商業套裝軟體CFD-RC建立一三維的質子交換膜蛇形燃料電池模型,並計算出燃料電池的各個現象,如電流密度、液態水的分佈、氧氣的分佈,進出口壓力降變化等等,之後再利用CFD-RC的計算結果當作正算值,並配合Fortran程式,撰寫以編號1(參照圖2-1)之流道尾端中央上方電流為目標函數的拉凡格式法反算程式,再加以配合以雲型線(B-Spline)來控制流道高度,並將2、3號之流道形狀設計成與流道1之形狀相同,進而達到最佳化蛇形燃料電池流道設計的目的。
    吾人在本篇論文中分別對距離流道出口(A)20mm處開始控制及(B)40mm處開始控制兩個範例做不同的討論,而吾人對這兩個範例所要求的增加電流量,分別為正上方電流增加(A)17%(B)15%。
    最後探討不同流道形狀的性能比較,如電流分佈、液態水氾濫、氧氣分佈、壓力降變化等問題,並以case A之流道實際加工,測試其與原始流道的性能比。結果顯示,在模擬中,經過設計的流道,可有效改善液態水,氧氣分佈等問題,進而改善電池性能,但亦存在將會造成更大的進出口壓降之問題;而在實驗的部份,結果亦可顯示出,設計過後的流道,其效能將會比原始流道之效能來得更佳。

    In this thesis, the computational fluid dynamics software CFD-RC is used to establish a three-dimensional numerical model of the serpentine proton exchange membrane fuel cell (PEMFC). The technique of Inverse Design Problem for optimizing the shape of gas channel for serpentine flow arrangement at cathode side in a PEMFC from the desired current densities near outlet of channel at cathode is presented in this work. An inverse problem, based on the Levenberg-Marquardt Method and the geometry of the gas channel for serpentine flow arrangement is generated using B-spline curve method which enables the shape of the fuel channel to be completely specified using only a small number of control points. The technique of parameter estimation for inverse design problem is thus chosen.
    Two different design cases are considered in the present thesis, the redesign channel length equals to 20 and 40 mm when counting from outlet for cases A and B, respectively. The design criterions are that the current density on the upper CP surface of the redesign channel is required to increase 17 % and 15 % of the original current density, respectively.
    Finally, an experiment is conducted based on the designed gas channels of case A and the performance is evaluated. Results show that by utilizing the designed optimal gas channel, the current of PEMFC can be increased, and at the same time the phenomena for liquid water accumulation in the channel can be greatly reduced.

    摘要 I ABSTRACT II 誌謝 III 表目錄 VII 圖目錄 VII 符號 XI 第一章 緒論 1 1-1 前言 1 1-2 研究背景與目的 2 1-3 文獻回顧 3 第二章 理論模式 10 2-1 基本假設 10 2-2 連續、動量及濃度方程式 11 2-3 電化學反應方程式 13 2-4液態水方程式 15 2-5離子傳輸方程式 15 2-6 電子傳輸方程式 17 2-7 邊界條件 18 第三章 數值模擬 24 3-1 直接解問題(THE DIRECT PROBLEM) 24 3-2 最佳化設計問題(THE OPTIMAL DESIGN PROBLEM) 25 3-3 拉凡格式法之極小化過程(LEVENBERG-MARGUARDT METHOD FOR MINIMIZATION) 27 3-4 數值計算流程 30 第四章 模擬之結果與討論 31 4-1流道形狀 31 4-2 電流密度 32 4-3液態水效應與氧氣濃度 34 4-4 壓力降變化 35 第五章 實驗驗證 57 5-1 燃料電池測試系統規格 57 5-2 燃料電池測試系統操作注意事項 58 5-3 實驗流程 59 5-4燃料電池測試系統操作程式 61 5-5 燃料電池測試系統軟體(電腦)操作說明 63 5-6 實驗結果與討論 67 第六章 結論 78 參考文獻 80 自述 83

    [1] Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model,” J. Electrochemical Society,Vol.138, No.8,pp.2334-2342.(1991)
    [2] Bernardi, D.M., and Verbrugge, M.W., “Mathematical Model of the Solid Polymer Electrolyte Fuel Cell” J. Electrochemical Society,Vol.139, No.9,pp.2477-2491.(1992)
    [3] Fuller, T. F., and Newman, J., “Water and Thermal Management in Solid Polymer Electrolyte Fuel Cells”, J. Electrochemical Society, Vol. 140,No.5, pp.1218-1225. (1993)
    [4] Gurau, V., Liu, H., and Kakac, S., “Two-Dimensional Model for Proton Exchange Membrane Fuel Cells,” AICHE J., Vol.44,No.11, pp.2410-2422. (1998)
    [5] Yi, J. S., and Nguyen, T. V, “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochemical Society, Vol. 146,No.1, pp. 38-45. (1999)

    [6] Um, S., Wang, C. Y., and Chen, K. S., “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” J. Electrochemical Society,Vol.147,No.12, pp. 4485-4493. (2000)

    [7] Shimpalee, S., and Dutta, S., “Numerical Prediction of Temperature Distribution in PEM Fuel Cells,” Numer. Heat Transfer, Part A, Vol.38,No.2, pp. 111-128. (2000)

    [8] Berning, T., Lu, D. M., and Djilali, N., “Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell,” J. Power Sources, Vol.106,No.1-2, pp. 284-294. (2002)
    [9] Berning, T. and Djilai, N., “Three-dimensional Computational Analysis of transport Phenomena in PEM Fuel Cell – a Parametric Study, ”J. Power Source, Vol.124, pp.440-452. (2003)
    [10] Gralip H. and Harvey G. N., “Main and Interaction Effects of PEM Fuel Cell Design Parameters,” J. Power Source, Vol.156,
    pp.424-433. (2006)
    [11] Wood, Ⅲ, DL., Yi, J. S., and Nguyen, T.V., “Effect of Direct Liquid Water Injection and Interdigitated Flow Field on the Performance of Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, Vol. 43, No.24, pp.3795-3809. (1998)
    [12] Dutta, S., Shimpalee, S., and Van Zee, J. W. “Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell,” Int. J. Heat Mass Transfer, Vol.44,No.11, pp. 2029-2042. (2001)

    [13] Li, P.W., Schaefer, L., Wang, Q.M., Zhang, T., and Chyu, M.K., “Multi-gas transportation electrochemical performance of a polymer electrolyte fuel cell with complex flow channels,” J. Power Sources, Vol.115, pp. 90-100.(2003)
    [14] Natarajan, D., and Nguyen, T.V., “Three dimensional effects of liquid water flooding in the cathode of a PEM fuel cell,” J. Power Source, Vol. 115, pp.66-80. (2003)
    [15] Ying, W., Tang, T.H., Lee, W.Y., Ke, J., and Kim, C.S., “Three-dimensional Modeling and Experimental Investigation for an Air-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC),” J. Power Sources, Vol.145, pp.563-571. (2005)
    [16] Oosthuizen, P.H., Sun, L. and McAuley, K.B., “The effect of channel-to-channel gas crossover on the pressure and temperature distribution in PEM fuel cell flow plates,” Applied Thermal Engineering, Vol.25, pp. 1083-1096.(2005)
    [17] Liu, H.C., Yan, W.M., Soong, C.Y., Chen, F., and Chu, H.S., “Reactant Gas Transport and Cell Performance of Proton Exchange Membrane Fuel Cell with Tapered Flow Field Design,” J. Power Sources, Vol.158, pp.78-87.(2006)
    [18] Shimpalee, S., Greenway, S., Van Zee, J.W., “The impact of channel path length on PEMFC flow-field design, ”J.Power Sources,Vol.160,pp.398-406.(2006)
    [19] Wang, C.Y.,and Cheng, P., “Multiphase flow and heat transfer in porous media, ”Advances in Heat Transfer,Vol.30, pp.93-196.(1997)
    [20] Wang, C.Y., Gu, W.B., and Liaw, B.Y., “Micro-macroscopic coupled modeling of batteries and fuel cells Part 1.model development,” J. Electrochemical Society, in press.(1999)
    [21] Dullien, F. A.L. ,“Porous Media, ”Academic Press, New York.(1991)
    [22] Nguyen, T.V. and White, R.E., “A Water and Heat Management Model for Proton-exchange-membrane Fuel Cells,” J. Electrochemical Society,Vol.140,No.8,pp.2178-2186.(1993)

    下載圖示 校內:2009-09-01公開
    校外:2009-09-01公開
    QR CODE