簡易檢索 / 詳目顯示

研究生: 蕭汶淇
Hsiao, Wen-Chi
論文名稱: EB病毒感染後對淋巴瘤細胞整體去氧核醣核酸甲基化的程度與去氧核醣核酸甲基轉化酶的影響
The effects of Epstein-Barr virus infection on global DNA methylation and expression of DNA methyltransferases in lymphoma cells
指導教授: 孫孝芳
Sun, H. Sunny
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: EB病毒甲基化
外文關鍵詞: EBV, methylation, DNMT
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 外遺傳機制,藉由去氧核醣核酸或組蛋白的修飾,導致基因可遺傳的抑制或活化作用,而這個機制不會改變去氧核醣核酸序列。最近研究顯示去氧核醣核酸的甲基化對於惡性腫瘤的形成扮演重要角色,包括在腫瘤抑制基因過度甲基或在致癌基因的低甲基化。Epstein-Barr病毒(EB病毒)是一種γ皰疹病毒,超過90%人口都被傳染,但是多數被感染的人依然是無任何症狀的。早先研究指出,EB病毒和許多人類的惡性腫瘤相關,譬如鼻咽癌、伯奇氏淋巴瘤(Burkitt’s lymphoma),T細胞淋巴瘤,和NK/T細胞淋巴瘤等。在之前的研究雖有報導在被EB病毒傳染的細胞,或轉殖EB病毒致癌蛋白LMP1(潛伏膜蛋白1)的細胞裡去氧核醣核酸甲基化的情形被改變;但是,對於EB病毒感染細胞後,是否會藉著改變宿主基因體中去氧核醣核酸甲基化的情形,而導致腫瘤的發展,仍然是不清楚的。這個研究的目的是調查在被EB病毒感染的細胞,或轉殖EB病毒致癌蛋白LMP1(潛伏膜蛋白1)的淋巴瘤細胞基因體中去氧核醣核酸的甲基化情形。我們先檢驗不同的淋巴瘤細胞株中被EB病毒感染的狀態和細胞中基因體去氧核醣核酸的甲基化樣式的關係。並利用南方墨點轉漬法以及西部墨點轉漬法分析這些淋巴瘤細胞的整體去氧核醣核酸甲基化的水平。此外,再分析轉殖EB病毒致癌蛋白LMP1 (潛伏膜蛋白1)的BJAB 和H9細胞株中 (BJAB-LMP1, H9-LMP1)。我們也利用相同的工具來研究細胞,整體去氧核醣核酸甲基化狀態。在第一部分的實驗中發現,被EB病毒感染的細胞株,Raji細胞在甲基化水平上和其他細胞相比並沒有特別出入;在去氧核醣核酸甲基轉化酶3a、3b的表現量比其他B細胞低,而去氧核醣核酸甲基轉化酶1的表現量比其他B細胞高。此外,去氧核醣核酸甲基轉化酶的表現量和細胞中去氧核醣核酸的甲基化程度是因著不同細胞而不同的,且三種去氧核醣核酸甲基轉化酶的表現量似乎是獨立的。在LMP1對細胞的影響方面,從我們的實驗結果發現,H9和H9-LMP1細胞的去氧核醣核酸甲基轉化酶1, 3a, 3b (DNMT1, 3a, 3b)的表現量是沒有差異的。然而,在BJAB 和BJAB-LMP1 細胞中,去氧核醣核酸甲基轉化酶3a, 3b (DNMT3a, 3b)有相似的表現量,但是在DNMT1的表現量上,BJAB細胞比BJAB-LMP1細胞能表達較多的DNMT1蛋白質。另外,我們的數據指出正常B和T細胞的基因體相較於BJAB和H9細胞以及BJAB-LMP1和H9-LMP1細胞而言,是過甲基化的。另外,BJAB 和BJAB-LMP1細胞由於在甲基化水平上是沒有區別的,但是H9-LMP1細胞相對H9細胞而言是低甲基化的,此結果也暗示LMP1的影響似乎在不同細胞種類視線不相同的。

    Epigenetic mechanisms, which involve DNA and histone modifications, result in the heritable silencing or activation of genes without a change in their sequences. Recent studies revealed DNA methylation contributing to the malignancy that may be involved hypermethylation in tumor suppressor genes or hypomethylation in oncogenes. Epstein-Barr virus (EBV) is a γ herpesvirus that infects more than 90% of the human population, although the majority of carriers remain asymptomatic. Previous studies indicated that EBV is associated with many human malignancies such as nasopharyngeal carcinoma, Burkitt’s lymphoma, T cell lymphoma, and natural killer (NK)/T cell lymphoma. Altered methylation pattern in EBV-infected or EBV oncoprotein LMP1-transfected cells have been reported in some tumors; however, it remains unclear whether EBV infection changes methylation pattern in the host genome that leads to the development of tumor. This study aims to investigate genomic methylation pattern in EBV-infected or EBV oncoprotein LMP1-transfected lymphoma cells. We have assayed EBV-infected status with genomic methylation pattern in various lymphoma cell lines. The global methylation levels of these lymphoma cells were determined by Southern blot analysis against human repetitive sequences and Western blot analysis with antibodies against DNA methyltransferases (DNMTs). Furthermore, the global methylation status in BJAB and H9 cells transfected with LMP1 were determined by the same approaches. Among three B lymphoma cell lines, the EBV infected Raji cells have the highest expression level of DNMT1 and lowest expression of DNMT3a and 3b. Furthermore, the expression levels of DNMTs and DNA methylation are different in various lymphoma cell lines. The expression patterns of the three DNMTs in different cell lines seem to be independent. There is no difference between H9 and H9-LMP1 cells in expression levels of DNMT1, 3a, 3b. BJAB and BJAB-LMP1 cells have similar expression levels of DNMT3a and DNMT3b, but BJAB cells express more DNMT1 protein than BJAB-LMP1 cells (P<0.05.) In addition, our data indicated the normal B and T cells are hypermethylated in comparison with BJAB and H9 lymphoma alone or transfected with LMP1. BJAB and BJAB-LMP1 cells have no difference in methylation level. H9-LMP1 is more hypomethylated than H9. These results suggest the effects of LMP1 transfection are distinct in different cell types.

    TABLE OF CONTENTS 摘要 I ABSTRACT III LIST OF TABLES IX LIST OF FIGURES X 1 INTRODUCTION 1 1.1 THE DEFINITION OF EPIGENETICS 1 1.1.1 Regulation of epigenetics 1 1.1.2 The role of DNA methylation in controlling normal cell function 5 1.2 REPETITIVE ELEMENTS IN THE HUMAN GENOME 10 1.2.1 The classes of repetitive element 10 1.2.2 The methylation of repetitive element. 13 1.2.3 The role of repetitive element in regulation of genomic stability 14 1.3 THE EPTEIN-BARR VIRUS 15 1.3.1 The genome of EBV 15 1.3.2 EBV hypermethylated genome to escape host immune system ……………………………………………………16 1.3.3 Human malignancies associated with EBV 17 1.3.4 EBV oncoprotein, latent membrane protein 1 (LMP1) 18 1.4 THE EFFECT OF EBV ASSOCIATED WITH EPIGENETIC CHANGED IN HUMAN MALIGNANCIES 20 1.5 OBJECTIVE OF THIS STUDY 21 2 MATERIALS AND METHODS 22 2.1 DNA EXTRACTION 22 2.2 SOUTHERN BLOTTING 23 2.2.1 Genomic DNA digestion 23 2.2.2 Gel electrophoresis of the restricted DNA 23 2.2.3 Transfer 23 2.2.4 Probes preparation 24 2.2.5 Hybridization 25 2.2.6 Detection 25 2.3 ISOLATION OF LEUKOCYTE FROM PERIPHERAL BLOOD 26 2.3.1 Isolation of peripheral blood mononuclear cells (PBMC) from peripheral blood 26 2.3.2 Isolation B (or T) cells from PBMC 27 2.4 TRANSFECTION BY ELECTROPORATION 28 2.5 CELL CULTURE 28 2.5.1 Cell lines 28 2.5.2 Routine maintenance and subculture 28 2.5.3 Cell stock 29 2.6 DETECTION OF EBV LMP1 AND EBNA1 GENE EXPRESSION BY PCR 29 2.7 PLASMID DNA PREPARATIONS 30 2.7.1 Minipreparation of plasmid DNA 30 2.7.2 Maxipreparation of plasmid DNA 31 2.8 PREPARATION OF CELL LYSATE 32 2.8.1 Isolation total cell lysate 32 2.8.2 Isolation nuclear extracts 33 2.9 PROTEIN CONCENTRATION DETERMINATION 34 2.10 WESTERN BLOTTING 34 2.10.1 Gel electrophoresis 34 2.10.2 Transfer 34 2.10.3 Hybridization 35 10.3.4 Detection 37 2.11 COMPUTATIONAL ANALYSIS 37 2.11.1 Primer design 37 2.11.2 Multiple sequence alignment 38 2.11.3 BLAST against the human genome 38 3. RESULTS 39 3.1 PREPARATION PROBES FOR SOUTHERN BLOT ANALYSIS 39 3.2 THE GLOBAL METHYLATION LEVEL IN LYMPHOMA CELL LINES 40 3.2.1 The EBV infection status in lymphoma cell lines 40 3.2.2 The expression level of DNA methyltransferases in lymphoma cell lines 40 3.2.3 The expression of LINE-1 in lymphoma cell lines 43 3.2.3 The DNA methylation status in lymphoma cell lines 43 3.3 THE EPIGENETIC CHANGE IN LMP1-TRANSFECTED BJAB AND H9 CELLS 45 3.3.1 The expression level of DNA methyltransferases in BJAB, BJAB-LMP1, H9, H9-LMP1 cells 45 3.3.3 The DNA methylation status in BJAB, BJAB-LMP1, H9, H9-LMP1 cells 46 4 DISCUSSIONS 48 4.1 THE CORRELATION BETWEEN GLOBAL DNA METHYLATION AND THE EXPRESSION OF DNMTS 48 4.2 THE EFFECT OF LMP1 TRANSFECTION ON DNA METHYLATION 50 4.3 THE METHYLATION LEVEL OF LINE-1 ELEMENTS AND THE EXPRESSION OF LINE-1 ORFS 52 4.4 CONCLUSION 53 5. REFERENCES 84

    Ambinder, R. F., K. D. Robertson, et al. (1999). "DNA methylation and the Epstein-Barr virus." Semin Cancer Biol 9(5): 369-75.
    Attwood, J. T., R. L. Yung, et al. (2002). "DNA methylation and the regulation of gene transcription." Cell Mol Life Sci 59(2): 241-57.
    Bannert, N. and R. Kurth (2004). "Retroelements and the human genome: new perspectives on an old relation." Proc Natl Acad Sci U S A 101 Suppl 2: 14572-9.
    Belgnaoui, S. M., R. G. Gosden, et al. (2006). "Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells." Cancer Cell Int 6: 13.
    Bender, J. (1998). "Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing." Trends Biochem Sci 23(7): 252-6.
    Bourc'his, D. and T. H. Bestor (2004). "Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L." Nature 431(7004): 96-9.
    Brucher, B. L., H. Geddert, et al. (2006). "Hypermethylation of hMLH1, HPP1, p14(ARF), p16(INK4A) and APC in primary adenocarcinomas of the small bowel." Int J Cancer.
    Chong, J. M., K. Sakuma, et al. (2003). "Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein-Barr virus." Cancer Sci 94(1): 76-80.
    Choo, K. H., B. Vissel, et al. (1991). "A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence." Nucleic Acids Res 19(6): 1179-82.
    Chuang, H. C., J. D. Lay, et al. (2005). "Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome." Blood 106(9): 3090-6.
    Crawford, D. H. (2001). "Biology and disease associations of Epstein-Barr virus." Philos Trans R Soc Lond B Biol Sci 356(1408): 461-73.
    Cui, H., E. L. Niemitz, et al. (2001). "Loss of imprinting of insulin-like growth factor-II in Wilms' tumor commonly involves altered methylation but not mutations of CTCF or its binding site." Cancer Res 61(13): 4947-50.
    Cummings, C. J. and H. Y. Zoghbi (2000). "Fourteen and counting: unraveling trinucleotide repeat diseases." Hum Mol Genet 9(6): 909-16.
    Delaval, K. and R. Feil (2004). "Epigenetic regulation of mammalian genomic imprinting." Curr Opin Genet Dev 14(2): 188-95.
    Eberharter, A. and P. B. Becker (2002). "Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics." EMBO Rep 3(3): 224-9.
    Eden, A., F. Gaudet, et al. (2003). "Chromosomal instability and tumors promoted by DNA hypomethylation." Science 300(5618): 455.
    Egger, G., G. Liang, et al. (2004). "Epigenetics in human disease and prospects for epigenetic therapy." Nature 429(6990): 457-63.
    Ehrlich, M., C. B. Woods, et al. (2006). "Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors." Oncogene 25(18): 2636-45.
    Eliopoulos, A. G. and A. B. Rickinson (1998). "Epstein-Barr virus: LMP1 masquerades as an active receptor." Curr Biol 8(6): R196-8.
    Eliopoulos, A. G. and L. S. Young (2001). "LMP1 structure and signal transduction." Semin Cancer Biol 11(6): 435-44.
    Emanuel, B. S. and T. H. Shaikh (2001). "Segmental duplications: an 'expanding' role in genomic instability and disease." Nat Rev Genet 2(10): 791-800.
    Etoh, T., Y. Kanai, et al. (2004). "Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers." Am J Pathol 164(2): 689-99.
    Feinberg, A. P., H. Cui, et al. (2002). "DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms." Semin Cancer Biol 12(5): 389-98.
    Fischle, W., Y. Wang, et al. (2003). "Histone and chromatin cross-talk." Curr Opin Cell Biol 15(2): 172-83.
    Florl, A. R., R. Lower, et al. (1999). "DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas." Br J Cancer 80(9): 1312-21.
    Florl, A. R. and W. A. Schulz (2003). "Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells." Genes Chromosomes Cancer 37(2): 141-8.
    Furukawa, Y., K. Sutheesophon, et al. (2005). "Methylation silencing of the Apaf-1 gene in acute leukemia." Mol Cancer Res 3(6): 325-34.
    Futscher, B. W., M. M. Oshiro, et al. (2002). "Role for DNA methylation in the control of cell type specific maspin expression." Nat Genet 31(2): 175-9.
    Goll, M. G., F. Kirpekar, et al. (2006). "Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2." Science 311(5759): 395-8.
    Gribnau, J., K. Hochedlinger, et al. (2003). "Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization." Genes Dev 17(6): 759-73.
    Hallet, B. and D. J. Sherratt (1997). "Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements." FEMS Microbiol Rev 21(2): 157-78.
    Hata, K. and Y. Sakaki (1997). "Identification of critical CpG sites for repression of L1 transcription by DNA methylation." Gene 189(2): 227-34.
    Heard, E. (2005). "Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome." Curr Opin Genet Dev 15(5): 482-9.
    Hendrich, B. and A. Bird (1998). "Identification and characterization of a family of mammalian methyl-CpG binding proteins." Mol Cell Biol 18(11): 6538-47.
    Herman, J. G., F. Latif, et al. (1994). "Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma." Proc Natl Acad Sci U S A 91(21): 9700-4.
    Hermann, A., H. Gowher, et al. (2004). "Biochemistry and biology of mammalian DNA methyltransferases." Cell Mol Life Sci 61(19-20): 2571-87.
    Hoffmann, M. J. and W. A. Schulz (2005). "Causes and consequences of DNA hypomethylation in human cancer." Biochem Cell Biol 83(3): 296-321.
    Horn, P. J. and C. L. Peterson (2006). "Heterochromatin assembly: a new twist on an old model." Chromosome Res 14(1): 83-94.
    Hsu, J. L. and S. L. Glaser (2000). "Epstein-barr virus-associated malignancies: epidemiologic patterns and etiologic implications." Crit Rev Oncol Hematol 34(1): 27-53.
    Jaenisch, R. and A. Bird (2003). "Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals." Nat Genet 33 Suppl: 245-54.
    Jones, P. A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in cancer." Nat Rev Genet 3(6): 415-28.
    Jurka, J. (1998). "Repeats in genomic DNA: mining and meaning." Curr Opin Struct Biol 8(3): 333-7.
    Kass, S. U., D. Pruss, et al. (1997). "How does DNA methylation repress transcription?" Trends Genet 13(11): 444-9.
    Kazazian, H. H., Jr. and J. L. Goodier (2002). "LINE drive. retrotransposition and genome instability." Cell 110(3): 277-80.
    Kwong, J., K. W. Lo, et al. (2002). "Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma." Clin Cancer Res 8(1): 131-7.
    Laird, P. W. (2003). "The power and the promise of DNA methylation markers." Nat Rev Cancer 3(4): 253-66.
    Lam, N. and B. Sugden (2003). "CD40 and its viral mimic, LMP1: similar means to different ends." Cell Signal 15(1): 9-16.
    Li, H. P. and Y. S. Chang (2003). "Epstein-Barr virus latent membrane protein 1: structure and functions." J Biomed Sci 10(5): 490-504.
    Li, H. P., Y. W. Leu, et al. (2005). "Epigenetic changes in virus-associated human cancers." Cell Res 15(4): 262-71.
    Lo, K. W. and D. P. Huang (2002). "Genetic and epigenetic changes in nasopharyngeal carcinoma." Semin Cancer Biol 12(6): 451-62.
    Maloisel, L. and J. L. Rossignol (1998). "Suppression of crossing-over by DNA methylation in Ascobolus." Genes Dev 12(9): 1381-9.
    Mathieu, O., Y. Yukawa, et al. (2002). "5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis." Plant J 29(3): 313-23.
    Menendez, L., B. B. Benigno, et al. (2004). "L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas." Mol Cancer 3: 12.
    Morris, K. V. (2005). "siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code." Cell Mol Life Sci 62(24): 3057-66.
    Mosialos, G. (2001). "Cytokine signaling and Epstein-Barr virus-mediated cell transformation." Cytokine Growth Factor Rev 12(2-3): 259-70.
    Nakagawa, H., R. B. Chadwick, et al. (2001). "Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer." Proc Natl Acad Sci U S A 98(2): 591-6.
    Nakatsuka, S., T. Takakuwa, et al. (2003). "Hypermethylation of death-associated protein (DAP) kinase CpG island is frequent not only in B-cell but also in T- and natural killer (NK)/T-cell malignancies." Cancer Sci 94(1): 87-91.
    Novik, K. L., I. Nimmrich, et al. (2002). "Epigenomics: genome-wide study of methylation phenomena." Curr Issues Mol Biol 4(4): 111-28.
    Nowak, S. J. and V. G. Corces (2004). "Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation." Trends Genet 20(4): 214-20.
    Ostertag, E. M. and H. H. Kazazian, Jr. (2001). "Biology of mammalian L1 retrotransposons." Annu Rev Genet 35: 501-38.
    Ricciardiello, L., A. Goel, et al. (2003). "Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer." Cancer Res 63(4): 787-92.
    Robertson, K. D. (2002). "DNA methylation and chromatin - unraveling the tangled web." Oncogene 21(35): 5361-79.
    Robertson, K. D. (2005). "DNA methylation and human disease." Nat Rev Genet 6(8): 597-610.
    Rowold, D. J. and R. J. Herrera (2000). "Alu elements and the human genome." Genetica 108(1): 57-72.
    Rudd, M. K., G. A. Wray, et al. (2006). "The evolutionary dynamics of alpha-satellite." Genome Res 16(1): 88-96.
    Sakuma, K., J. M. Chong, et al. (2004). "High-density methylation of p14ARF and p16INK4A in Epstein-Barr virus-associated gastric carcinoma." Int J Cancer 112(2): 273-8.
    Salozhin, S. V., E. B. Prokhorchuk, et al. (2005). "Methylation of DNA--one of the major epigenetic markers." Biochemistry (Mosc) 70(5): 525-32.
    Sanchez-Beato, M., A. I. Saez, et al. (2001). "Overall survival in aggressive B-cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27." Am J Pathol 159(1): 205-13.
    Sato, F. and S. J. Meltzer (2006). "CpG island hypermethylation in progression of esophageal and gastric cancer." Cancer 106(3): 483-93.
    Schwarzacher, T. (2003). "DNA, chromosomes, and in situ hybridization." Genome 46(6): 953-62.
    Siu, L. L., J. K. Chan, et al. (2002). "Specific patterns of gene methylation in natural killer cell lymphomas : p73 is consistently involved." Am J Pathol 160(1): 59-66.
    Skowronski, J. and M. F. Singer (1985). "Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line." Proc Natl Acad Sci U S A 82(18): 6050-4.
    Smit, A. F. and A. D. Riggs (1996). "Tiggers and DNA transposon fossils in the human genome." Proc Natl Acad Sci U S A 93(4): 1443-8.
    Soifer, H. S., A. Zaragoza, et al. (2005). "A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon." Nucleic Acids Res 33(3): 846-56.
    Strahl, B. D. and C. D. Allis (2000). "The language of covalent histone modifications." Nature 403(6765): 41-5.
    Strahl, B. D., P. A. Grant, et al. (2002). "Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression." Mol Cell Biol 22(5): 1298-306.
    Strathdee, G., B. R. Davies, et al. (2004). "Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene." Carcinogenesis 25(5): 693-701.
    Strathdee, G., A. Sim, et al. (2004). "Control of gene expression by CpG island methylation in normal cells." Biochem Soc Trans 32(Pt 6): 913-5.
    Sudo, M., J. M. Chong, et al. (2004). "Promoter hypermethylation of E-cadherin and its abnormal expression in Epstein-Barr virus-associated gastric carcinoma." Int J Cancer 109(2): 194-9.
    Sun, H. S., I. J. Su, et al. (2003). "A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma." Br J Haematol 122(4): 590-9.
    Swales, A. K. and N. Spears (2005). "Genomic imprinting and reproduction." Reproduction 130(4): 389-99.
    Takai, D. and P. A. Jones (2002). "Comprehensive analysis of CpG islands in human chromosomes 21 and 22." Proc Natl Acad Sci U S A 99(6): 3740-5.
    Takai, D., Y. Yagi, et al. (2000). "Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis." Jpn J Clin Oncol 30(7): 306-9.
    Tao, Q. and K. D. Robertson (2003). "Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection." Clin Immunol 109(1): 53-63.
    Thompson, M. P. and R. Kurzrock (2004). "Epstein-Barr virus and cancer." Clin Cancer Res 10(3): 803-21.
    Tsai, C. N., C. L. Tsai, et al. (2002). "The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases." Proc Natl Acad Sci U S A 99(15): 10084-9.
    Tsao, S. W., G. Tramoutanis, et al. (2002). "The significance of LMP1 expression in nasopharyngeal carcinoma." Semin Cancer Biol 12(6): 473-87.
    Turek-Plewa, J. and P. P. Jagodzinski (2005). "The role of mammalian DNA methyltransferases in the regulation of gene expression." Cell Mol Biol Lett 10(4): 631-47.
    Van den Wyngaert, I., J. Sprengel, et al. (1998). "Cloning and analysis of a novel human putative DNA methyltransferase." FEBS Lett 426(2): 283-9.
    Volpe, T. A., C. Kidner, et al. (2002). "Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi." Science 297(5588): 1833-7.
    Walsh, C. P., J. R. Chaillet, et al. (1998). "Transcription of IAP endogenous retroviruses is constrained by cytosine methylation." Nat Genet 20(2): 116-7.
    Wei, M., T. A. Grushko, et al. (2005). "BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy." Cancer Res 65(23): 10692-9.
    Weisenberger, D. J., M. Campan, et al. (2005). "Analysis of repetitive element DNA methylation by MethyLight." Nucleic Acids Res 33(21): 6823-36.
    Workman, J. L. and R. E. Kingston (1998). "Alteration of nucleosome structure as a mechanism of transcriptional regulation." Annu Rev Biochem 67: 545-79.
    Yanokura, M., K. Banno, et al. (2006). "Hypermethylation in the p16 promoter region in the carcinogenesis of endometrial cancer in Japanese patients." Anticancer Res 26(2A): 851-6.
    Yao, Q., X. S. He, et al. (2006). "[Promotor hypermethylation of E-cadherin, p16 and estrogen receptor in prostate carcinoma]." Zhonghua Nan Ke Xue 12(1): 28-31.
    Yoder, J. A. and T. H. Bestor (1998). "A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast." Hum Mol Genet 7(2): 279-84.
    Yoder, J. A., C. P. Walsh, et al. (1997). "Cytosine methylation and the ecology of intragenomic parasites." Trends Genet 13(8): 335-40.
    Young, L. S. and P. G. Murray (2003). "Epstein-Barr virus and oncogenesis: from latent genes to tumours." Oncogene 22(33): 5108-21.
    Young, L. S. and A. B. Rickinson (2004). "Epstein-Barr virus: 40 years on." Nat Rev Cancer 4(10): 757-68.
    Zhang, G., E. A. Campbell, et al. (1999). "Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution." Cell 98(6): 811-24.
    Zhang, S., C. Guo, et al. (2006). "Promoter hypermethylation of DNA repair gene MGMT in laryngeal squamous cell carcinoma." J Huazhong Univ Sci Technolog Med Sci 26(1): 101-4.
    Zilberman, D., X. Cao, et al. (2003). "ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation." Science 299(5607): 716-9.
    Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart, William M. 1999. Introduction to Genetic Analysis (7th ed.) New York: W. H. Freeman & Co.
    Brown, T.A. 2002. Genomes (2nd ed.). New York and London: Garland Science

    下載圖示 校內:2007-08-25公開
    校外:2007-08-25公開
    QR CODE