| 研究生: |
吳雨桐 Wu, Yu-Tong |
|---|---|
| 論文名稱: |
以蛋白質介電層實現低電壓驅動之有機異質結構場效電晶體記憶元件 Low-Voltage Organic Heterojunction Field-Effect Transistor Memories Enabled by Protein-Based Dielectric Layers |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 蛋白質介電質材料 、牛血清白蛋白 (Bovine Serum Albumin, BSA) 、低電壓驅動 、異質結構 、有機薄膜場效電晶體 、記憶元件 、新穎記憶元件操作機制 、聚乙烯醇 (Polyvinyl Alcohol, PVA) |
| 外文關鍵詞: | Protein dielectric materials, Bovine serum albumin (BSA), Low-voltage operation, Heterojunction, Organic thin-film transistors, Memory devices, Novel memory operating mechanism, Poly(vinyl alcohol) (PVA) |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低毒性且具環境友善性的有機記憶材料之開發,對於實現永續與生物相容性電子元件至關重要。本研究探討以生物相容性材料應用於有機記 憶 體 元件之可行性。元件以 n 型有機半導體 N,N’-Ditridecyl-3,4,9,10-perylenetetracarboxylic diimide(PTCDI-C13)作為主動層,並以牛血清白蛋白(Bovine Serum Albumin, BSA)作為介電層,分析其電荷捕捉行為與記憶特性。BSA 內部之極性結構與官能基在脈衝電壓操作下,會影響介電層內部之陷阱態分佈,進而造成穩定且可重複之臨界電壓偏移。進一步在 PTCDI-C13 層間引入 p 型半導體 pentacene,形成 PTCDI-C13/pentacene/PTCDI-C13 異質結構,以調控界面能障及陷阱分佈。異質結構可使記憶視窗由 +0.1 V 擴大至 −0.41 V,其中 pentacene 厚度為 5 nm 時具有較佳之電荷儲存特性。另在寫入與清除操作過程中,元件之臨界電壓偏移方向與常見之有機記憶體操作行為不同,顯示其電荷捕捉與釋放機制可能與蛋白質介電層內部之極性分佈與陷阱態有關。此外,於 BSA 介電層中摻入Poly(vinyl alcohol) (PVA)形成複合介電層後,可進一步提升介電特性,使記憶視窗增加至 −0.8 V。相較於僅使用 BSA 之元件,加入 PVA 後之元件在耐久性與保持特性方面皆有明顯改善,可重複進行超過 200 次寫入/清除操作,且記憶狀態可維持超過 6000 秒。上述結果顯示,蛋白質基介電層搭配環境友善高分子材料,具應用於有機記憶體元件之潛力。
Low-toxicity and environmentally friendly organic memory materials are essential for sustainable and biocompatible electronics. In this study, organic memory devices were fabricated using n-type N,N′-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13) as the active layer and bovine serum albumin (BSA) as the dielectric layer. The intrinsic polarity and functional groups of BSA enable stable and reproducible threshold-voltage shifts through charge trapping under pulsed voltage operation.
A PTCDI-C13/pentacene/PTCDI-C13 heterojunction was introduced to modulate interfacial energy barriers and trap-state distributions, expanding the memory window from +0.1 V to − 0.41 V, with optimal performance at a pentacene thickness of 5 nm. Notably, the devices exhibit an unconventional threshold-voltage shift direction during program and erase operations, attributed to the polar nature of the protein-based dielectric layer.
Furthermore, incorporating poly(vinyl alcohol) (PVA) into BSA to form a composite dielectric layer further enhanced device performance, increasing the memory window to − 0.8 V and significantly improving endurance (> 200 cycles) and retention (> 6000 s). These results demonstrate the potential of protein-based composite dielectrics for environmentally friendly organic memory applications.
[1] F. Bibi, M. Villain, C. Guillaume, B. Sorli, and N. Gontard, “A review: Origins of the dielectric properties of proteins and potential development as bio-sensors,” Sensors, 16, no. 8, 1232, 2016.
[2] W. Li, Q. Liu, Y. Zhang, C. A. Li, Z. He, W. C. Choy, P. J. Low, P. Sonar, and A. K. K. Kyaw, “Biodegradable materials and green processing for green electronics,” Advanced Materials, 32, no. 33, 2001591, 2020.
[3] G. Singh, M. Kaur, V. K. Aswal, and T. S. Kang, “Aqueous colloidal systems of bovine serum albumin and functionalized surface active ionic liquids for material transport,” RSC Advances, 10, 7073–7082, 2020.
[4] C. Y. Lee, J. C. Hwang, Y. L. Chueh, T. H. Chang, Y. Y. Cheng, and P. C. Lyu, “Hydrated bovine serum albumin as the gate dielectric material for organic field-effect transistors,” Organic Electronics, 14, no. 10, 2645–2651, 2013.
[5] M. Saha, S. Dey, S. M. Nawaz, and A. Mallik, “Environment-friendly resistive memory based on natural casein: Role of electrode and bio-material concentration,” Organic Electronics, 121, 106869, 2023.
[6] G. Jutz, P. van Rijn, B. S. Miranda, and A. Böker, “Ferritin: A versatile building block for bionanotechnology,” Chemical Reviews, 115, 1653–1701, 2015.
[7] J. S. Benas, L. Veeramuthu, Y. Y. Chuang, S. Y. Chuang, F. C. Liang, C. J. Cho, W. Y. Lee, Y. Yan, Y. Zhou, and C. C. Kuo, “Eco-friendly collagen-based bio-organic field effect transistor with improved memory characteristics,” Organic Electronics, 86, 105925, 2020.
[8] C. Liu, Y. Xu, Z. Liu, H. N. Tsao, K. Müllen, T. Minari, Y.-Y. Noh, and H. Sirringhaus, “Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions,” Organic Electronics, 15, 1884–1889, 2014.
[9] W. Zhang, S. Li, C. Zhang, J. Shang, M. Ma, and D. Ma, “Recent advances in heterostructure-based organic field-effect transistor memory,” Nanoscale, 17, 20643–20669, 2025.
[10] L. Wu, T. Yu, Z. Liu, Y. Wang, Z. Wan, J. Yin, Y. Xia, and Z. Liu, “High-performance flexible pentacene transistor memory with PTCDI-C13 as N-type buffer layer,” Semiconductor Science and Technology, 38, 025008, 2023.
[11] Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang, and L. Sun, “Van der Waals materials-based floating gate memory for neuromorphic computing,” Chip, 2, 100059, 2023.
[12] C. Hu, L. Liang, J. Yu, L. Cheng, N. Zhang, Y. Wang, Y. Wei, Y. Fu, Z. L. Wang, and Q. Sun, “Neuromorphic floating-gate memory based on 2D materials,” Cyborg and Bionic Systems, 6, 0256, 2025.
[13] Y. Chen, S. Wang, F. Liu, B. Wu, Y. Deng, R. Tao, Y. Wu, and D. Gao, “The working principle, structural design and material optimization of ferroelectric memory devices,” Journal of Alloys and Compounds, 1010, 178077, 2025.
[14] H. Ishiwara,“Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors, ” Current Applied Physics, 9, no. 1, PS2–S6, 2009.
[15] T.-W. Chang, Y.-S. Li, N. Matsuhisa, and C.-C. Shih, “Emerging polymer electrets for transistor-structured memory devices and artificial synapses,” Journal of Materials Chemistry C, 10, 13372–13387, 2022.
[16] Y. J. Eng, Y.-H. Weng, A. B. Oh, C.-L. Liu, and J. M. W. Chan, “Polymer electrets for organic nonvolatile memory devices,” Materials Today Chemistry, 42, 102380, 2024.
[17] Y. H. Chou, N. H. You, T. Kurosawa, W. Y. Lee, T. Higashihara, M. Ueda, and W. C. Chen, “Thiophene and selenophene donor–acceptor polyimides as polymer electrets for nonvolatile transistor memory devices,” Macromolecules, 45, no. 17, 2012.
[18] W. Li, F. Guo, H. Ling, P. Zhang, M. Yi, L. Wang, D. Wu, L. Xie, and W. Huang, “High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/P13/pentacene as both charge transport and trapping layers,” Advanced Science, 4, 1700007, 2017.
[19] W. Y. Chou, S. K. Peng, F. C. Wu, H. S. Sheu, Y. F. Wang, P. K. Huang, and H. L. Cheng, “Memory characteristics of organic field-effect memory transistors modulated by nano-p–n junctions,” Journal of Materials Chemistry C, 8, 7501–7510, 2020.
[20] C. Yim, J. Choy, H. Youi, J. Hwang, E. Jo, J. Lee, and H. Kim, “Dilute polymerization of aniline on PDMS substrate via surface modification using (3-aminopropyl) triethoxysilane for stretchable strain sensor,” Sensors, 22, no. 7, 22072741, 2022.
[21] G. Binnig and C.-F. Quate,“Atomic force microscope, ” Physical Review Letters, 56, no. 9, 1986.
[22] X. Guo, L. Han, and X. Hou, “Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration,” Materials Chemistry Frontiers, 5, 6760–6778, 2021.
[23] J. Kang, N. Shin, D. Y. Jang, V. M. Prabhu, and D. Y. Yoon, “Structure and properties of small molecule–polymer blend semiconductors for organic thin film transistors,” Journal of the American Chemical Society, 130, no. 37, 12273–12275, 2008.
[24] G. Horowitz,“Organic field-effect transistors, ” Advanced Materials, 10, 365–377, 1998.
[25] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, 42, 583–596, 2002.
[26] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, 520, 1679–1693, 2012.
[27] M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, and P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes,” Organic Electronics, 10, 1252–1258, 2009.
[28] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview,” Proceedings of the IEEE, 85, 1248, 1997.
[29] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. Y. Yang, D. Y. Shu, and F. C. Tang, “High mobility pentacene thin-film transistors on photopolymer modified dielectrics,”Japanese Journal of Applied Physics, 45, 7922, 2006.
[30] E. H. Nicollian and A. Goetzberger, “The Si–SiO₂ interface—Electrical properties as determined by the metal-insulator-silicon conductance technique,” The Bell System Technical Journal, 46, no. 6, 1055–1033, 1967.