簡易檢索 / 詳目顯示

研究生: 吳雨桐
Wu, Yu-Tong
論文名稱: 以蛋白質介電層實現低電壓驅動之有機異質結構場效電晶體記憶元件
Low-Voltage Organic Heterojunction Field-Effect Transistor Memories Enabled by Protein-Based Dielectric Layers
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 119
中文關鍵詞: 蛋白質介電質材料牛血清白蛋白 (Bovine Serum Albumin, BSA)低電壓驅動異質結構有機薄膜場效電晶體記憶元件新穎記憶元件操作機制聚乙烯醇 (Polyvinyl Alcohol, PVA)
外文關鍵詞: Protein dielectric materials, Bovine serum albumin (BSA), Low-voltage operation, Heterojunction, Organic thin-film transistors, Memory devices, Novel memory operating mechanism, Poly(vinyl alcohol) (PVA)
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低毒性且具環境友善性的有機記憶材料之開發,對於實現永續與生物相容性電子元件至關重要。本研究探討以生物相容性材料應用於有機記 憶 體 元件之可行性。元件以 n 型有機半導體 N,N’-Ditridecyl-3,4,9,10-perylenetetracarboxylic diimide(PTCDI-C13)作為主動層,並以牛血清白蛋白(Bovine Serum Albumin, BSA)作為介電層,分析其電荷捕捉行為與記憶特性。BSA 內部之極性結構與官能基在脈衝電壓操作下,會影響介電層內部之陷阱態分佈,進而造成穩定且可重複之臨界電壓偏移。進一步在 PTCDI-C13 層間引入 p 型半導體 pentacene,形成 PTCDI-C13/pentacene/PTCDI-C13 異質結構,以調控界面能障及陷阱分佈。異質結構可使記憶視窗由 +0.1 V 擴大至 −0.41 V,其中 pentacene 厚度為 5 nm 時具有較佳之電荷儲存特性。另在寫入與清除操作過程中,元件之臨界電壓偏移方向與常見之有機記憶體操作行為不同,顯示其電荷捕捉與釋放機制可能與蛋白質介電層內部之極性分佈與陷阱態有關。此外,於 BSA 介電層中摻入Poly(vinyl alcohol) (PVA)形成複合介電層後,可進一步提升介電特性,使記憶視窗增加至 −0.8 V。相較於僅使用 BSA 之元件,加入 PVA 後之元件在耐久性與保持特性方面皆有明顯改善,可重複進行超過 200 次寫入/清除操作,且記憶狀態可維持超過 6000 秒。上述結果顯示,蛋白質基介電層搭配環境友善高分子材料,具應用於有機記憶體元件之潛力。

    Low-toxicity and environmentally friendly organic memory materials are essential for sustainable and biocompatible electronics. In this study, organic memory devices were fabricated using n-type N,N′-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13) as the active layer and bovine serum albumin (BSA) as the dielectric layer. The intrinsic polarity and functional groups of BSA enable stable and reproducible threshold-voltage shifts through charge trapping under pulsed voltage operation.
    A PTCDI-C13/pentacene/PTCDI-C13 heterojunction was introduced to modulate interfacial energy barriers and trap-state distributions, expanding the memory window from +0.1 V to − 0.41 V, with optimal performance at a pentacene thickness of 5 nm. Notably, the devices exhibit an unconventional threshold-voltage shift direction during program and erase operations, attributed to the polar nature of the protein-based dielectric layer.
    Furthermore, incorporating poly(vinyl alcohol) (PVA) into BSA to form a composite dielectric layer further enhanced device performance, increasing the memory window to − 0.8 V and significantly improving endurance (> 200 cycles) and retention (> 6000 s). These results demonstrate the potential of protein-based composite dielectrics for environmentally friendly organic memory applications.

    中文摘要 I Extended Abstract II 誌謝 XIV 目錄 XVI 表目錄 XX 圖目錄 XXI 第一章、緒論 1 1.1蛋白質材料在有機場效電晶體的應用 1 1.2異質結構有機場效電晶體簡介 3 1.3有機記憶元件簡介 3 1.3.1浮閘記憶體 4 1.3.2鐵電記憶體 5 1.3.3聚合物駐極體記憶體 6 1.4研究動機 6 第二章 實驗方法與儀器介紹 14 2.1實驗材料 14 2.1.1 元件基板 14 2.1.2 金屬電極 14 2.1.3蛋白質電介質材料 14 2.1.4有機高分子介電修飾層材料 14 2.1.5有機N型半導體材料 16 2.1.6有機P型半導體材料 16 2.2有機薄膜電晶體製程 17 2.2.1基板清洗 17 2.2.2閘極蒸鍍與物理氣相沉積儀 17 2.2.3高介電係數金屬氧化層與高真空電漿蝕刻系統 18 2.2.4旋轉塗佈介電修飾層與旋轉塗佈機 19 2.2.5蒸鍍有機半導體層 20 2.2.6蒸鍍汲極與源極 21 2.3元件電特性分析 21 2.3.1 電晶體參數與記憶視窗量測(半導體參數分析儀) 21 2.3.2 介電層與主動層之電容及導納分析(電容分析儀) 23 2.4分析儀器介紹 24 2.4.1表面形貌分析(原子力顯微鏡, AFM) 24 第三章 有機薄膜電晶體記憶體概論 26 3.1有機薄膜電晶體基本結構與操作原理 26 3.1.1基本結構 26 3.1.2操作原理 28 3.2有機薄膜電晶體載子傳輸機制 29 3.3有機薄膜電晶體基本電特性參數 29 3.3.1汲極電流與載子遷移率(mobility, μ) 29 3.3.2臨界電壓 31 3.3.3次臨界擺幅 32 3.3.4電流開關比 33 3.4有機記憶體元件操作原理 33 3.4.1記憶體元件寫入與清除操作原理 34 3.4.2記憶視窗(Memory Window, VMW) 35 3.4.3記憶耐久力(Endurance) 35 3.4.4記憶保持力(Retention) 35 3.4.5界面缺陷態密度(Interface Trap Density of States) 36 第四章 實驗結果與討論 38 4.1 前言 38 4.2不同pentacene厚度有機異質結構場效電晶體記憶體元件特性分析 38 4.2.1電容-電壓分析 39 4.2.2導納分析 41 4.2.3 轉換曲線 43 4.2.4 記憶視窗分析 46 4.3不同介電層及不同主動層結構有機場效電晶體記憶體元件寫入方向特性比較分析 52 4.3.1電容-電壓分析 52 4.3.2導納分析 55 4.3.3 記憶視窗分析 58 4.4異質結構之薄膜特性分析 64 4.4.1異質結構之原子力顯微鏡分析 64 第五章 記憶元件可靠度分析 68 5.1 前言 68 5.2不同介電層有機異質結構場效電晶體記憶體元件特性分析 68 5.2.1電容-電壓分析 68 5.2.2導納分析 71 5.2.3記憶視窗分析 73 5.2.4耐久力(Endurance)分析 77 5.2.5保持力(Retention)分析 79 5.3半導體成長於不同介電層上之薄膜特性分析 81 5.3.1半導體成長於不同介電層上之原子力顯微鏡分析 81 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 88

    [1] F. Bibi, M. Villain, C. Guillaume, B. Sorli, and N. Gontard, “A review: Origins of the dielectric properties of proteins and potential development as bio-sensors,” Sensors, 16, no. 8, 1232, 2016.
    [2] W. Li, Q. Liu, Y. Zhang, C. A. Li, Z. He, W. C. Choy, P. J. Low, P. Sonar, and A. K. K. Kyaw, “Biodegradable materials and green processing for green electronics,” Advanced Materials, 32, no. 33, 2001591, 2020.
    [3] G. Singh, M. Kaur, V. K. Aswal, and T. S. Kang, “Aqueous colloidal systems of bovine serum albumin and functionalized surface active ionic liquids for material transport,” RSC Advances, 10, 7073–7082, 2020.
    [4] C. Y. Lee, J. C. Hwang, Y. L. Chueh, T. H. Chang, Y. Y. Cheng, and P. C. Lyu, “Hydrated bovine serum albumin as the gate dielectric material for organic field-effect transistors,” Organic Electronics, 14, no. 10, 2645–2651, 2013.
    [5] M. Saha, S. Dey, S. M. Nawaz, and A. Mallik, “Environment-friendly resistive memory based on natural casein: Role of electrode and bio-material concentration,” Organic Electronics, 121, 106869, 2023.
    [6] G. Jutz, P. van Rijn, B. S. Miranda, and A. Böker, “Ferritin: A versatile building block for bionanotechnology,” Chemical Reviews, 115, 1653–1701, 2015.
    [7] J. S. Benas, L. Veeramuthu, Y. Y. Chuang, S. Y. Chuang, F. C. Liang, C. J. Cho, W. Y. Lee, Y. Yan, Y. Zhou, and C. C. Kuo, “Eco-friendly collagen-based bio-organic field effect transistor with improved memory characteristics,” Organic Electronics, 86, 105925, 2020.
    [8] C. Liu, Y. Xu, Z. Liu, H. N. Tsao, K. Müllen, T. Minari, Y.-Y. Noh, and H. Sirringhaus, “Improving solution-processed n-type organic field-effect transistors by transfer-printed metal/semiconductor and semiconductor/semiconductor heterojunctions,” Organic Electronics, 15, 1884–1889, 2014.
    [9] W. Zhang, S. Li, C. Zhang, J. Shang, M. Ma, and D. Ma, “Recent advances in heterostructure-based organic field-effect transistor memory,” Nanoscale, 17, 20643–20669, 2025.
    [10] L. Wu, T. Yu, Z. Liu, Y. Wang, Z. Wan, J. Yin, Y. Xia, and Z. Liu, “High-performance flexible pentacene transistor memory with PTCDI-C13 as N-type buffer layer,” Semiconductor Science and Technology, 38, 025008, 2023.
    [11] Q. Zhang, Z. Zhang, C. Li, R. Xu, D. Yang, and L. Sun, “Van der Waals materials-based floating gate memory for neuromorphic computing,” Chip, 2, 100059, 2023.
    [12] C. Hu, L. Liang, J. Yu, L. Cheng, N. Zhang, Y. Wang, Y. Wei, Y. Fu, Z. L. Wang, and Q. Sun, “Neuromorphic floating-gate memory based on 2D materials,” Cyborg and Bionic Systems, 6, 0256, 2025.
    [13] Y. Chen, S. Wang, F. Liu, B. Wu, Y. Deng, R. Tao, Y. Wu, and D. Gao, “The working principle, structural design and material optimization of ferroelectric memory devices,” Journal of Alloys and Compounds, 1010, 178077, 2025.
    [14] H. Ishiwara,“Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors, ” Current Applied Physics, 9, no. 1, PS2–S6, 2009.
    [15] T.-W. Chang, Y.-S. Li, N. Matsuhisa, and C.-C. Shih, “Emerging polymer electrets for transistor-structured memory devices and artificial synapses,” Journal of Materials Chemistry C, 10, 13372–13387, 2022.
    [16] Y. J. Eng, Y.-H. Weng, A. B. Oh, C.-L. Liu, and J. M. W. Chan, “Polymer electrets for organic nonvolatile memory devices,” Materials Today Chemistry, 42, 102380, 2024.
    [17] Y. H. Chou, N. H. You, T. Kurosawa, W. Y. Lee, T. Higashihara, M. Ueda, and W. C. Chen, “Thiophene and selenophene donor–acceptor polyimides as polymer electrets for nonvolatile transistor memory devices,” Macromolecules, 45, no. 17, 2012.
    [18] W. Li, F. Guo, H. Ling, P. Zhang, M. Yi, L. Wang, D. Wu, L. Xie, and W. Huang, “High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/P13/pentacene as both charge transport and trapping layers,” Advanced Science, 4, 1700007, 2017.
    [19] W. Y. Chou, S. K. Peng, F. C. Wu, H. S. Sheu, Y. F. Wang, P. K. Huang, and H. L. Cheng, “Memory characteristics of organic field-effect memory transistors modulated by nano-p–n junctions,” Journal of Materials Chemistry C, 8, 7501–7510, 2020.
    [20] C. Yim, J. Choy, H. Youi, J. Hwang, E. Jo, J. Lee, and H. Kim, “Dilute polymerization of aniline on PDMS substrate via surface modification using (3-aminopropyl) triethoxysilane for stretchable strain sensor,” Sensors, 22, no. 7, 22072741, 2022.
    [21] G. Binnig and C.-F. Quate,“Atomic force microscope, ” Physical Review Letters, 56, no. 9, 1986.
    [22] X. Guo, L. Han, and X. Hou, “Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration,” Materials Chemistry Frontiers, 5, 6760–6778, 2021.
    [23] J. Kang, N. Shin, D. Y. Jang, V. M. Prabhu, and D. Y. Yoon, “Structure and properties of small molecule–polymer blend semiconductors for organic thin film transistors,” Journal of the American Chemical Society, 130, no. 37, 12273–12275, 2008.
    [24] G. Horowitz,“Organic field-effect transistors, ” Advanced Materials, 10, 365–377, 1998.
    [25] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, 42, 583–596, 2002.
    [26] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, 520, 1679–1693, 2012.
    [27] M. Debucquoy, M. Rockelé, J. Genoe, G. H. Gelinck, and P. Heremans, “Charge trapping in organic transistor memories: On the role of electrons and holes,” Organic Electronics, 10, 1252–1258, 2009.
    [28] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview,” Proceedings of the IEEE, 85, 1248, 1997.
    [29] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. Y. Yang, D. Y. Shu, and F. C. Tang, “High mobility pentacene thin-film transistors on photopolymer modified dielectrics,”Japanese Journal of Applied Physics, 45, 7922, 2006.
    [30] E. H. Nicollian and A. Goetzberger, “The Si–SiO₂ interface—Electrical properties as determined by the metal-insulator-silicon conductance technique,” The Bell System Technical Journal, 46, no. 6, 1055–1033, 1967.

    QR CODE