| 研究生: |
王益彤 Wang, Yi-Tong |
|---|---|
| 論文名稱: |
利用逆算法配合實驗數據預測單橢圓管式之管鰭片蒸發器於結霜狀態下之熱傳係數 Estimate of the Heat Transfer Coefficient on the Finned-Elliptic Tube Evaporator under Frosting Conditions with Experimental Data |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 逆算法 、熱傳係數 |
| 外文關鍵詞: | heat transfer coefficient, inverse scheme |
| 相關次數: | 點閱:145 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文乃探討在強迫對流及結霜狀態下鰭片間距對單橢圓管式之管鰭片蒸發器之鰭片上之熱傳係數的影響。論文內容包含數值及實驗分析兩部分,即以實驗擷取不同量測位置之鰭片溫度,而後再配合反算法來預估熱傳係數與環境條件之間的關係。
本研究運用混合拉氏轉換法(Laplace transform technique)和有限差分法(Finite - difference method)之數值逆算法來解析二維逆向熱傳導問題以預測鰭片於結霜狀態下之熱傳係數。在進行逆算法的過程中,將以最小平方法(Least-squares scheme)來修正預估值,直至於量測點之計算溫度與其所對應點之量測溫度之相對誤差甚小為止。一般而言,熱傳係數之預測值的精度對量測溫度的誤差極為靈敏,因此本文也將探討量測誤差對預測值的影響。
本文將以自行設計的板鰭管式蒸發器之鰭片組並配合相關實驗設備,以量取於結霜狀態下之鰭片溫度與管壁溫度。根據這些數據,再配合數值逆算法來估算鰭片上之結霜熱傳係數。研究結果顯示迎風面區域的溫度會大於背風面區域的溫度,而且迎風面之熱傳係數會大於背風面的熱傳係數。
The purpose of this thesis is to investigate the effect of the fin spacing on the frosted heat transfer coefficient of the plate fin inside plate finned-tube evaporator with one - tube elliptical tube under force convection. The thesis includes the numerical and experimental parts. The present inverse scheme in conjunction with the fin temperature measurements at various measurement locations is applied to predict the frosted heat transfer coefficient on the plate fin.
The hybrid numerical method involving the Laplace transform technique and the finite-difference method is applied to solve the 2-D inverse heat conduction problem in order to predict the frosted heat transfer coefficient on the fin. The least-squares scheme is applied to minimize the sum of the squares of the deviations between the calculated and measured temperatures in order to correct the estimated values. In general, slight inaccuracies of the interior measured temperatures can affect the accuracy of the estimated results for most of the previous inverse schemes. Thus the effect of the measurement error on the estimation of the frosted heat transfer coefficient will be investigated in the present analysis. A plate finned-tube evaporator is set up in conjunction with its relative experimental equipments for measuring the fin temperature. The frosted heat transfer coefficient can be predicted by using the present inverse scheme in conjunction with the fin temperature measurements. The results show that the temperature with the wind is higher than that on the lee side and the heat transfer coefficient has the same trend.
1.F. E. M. Saboya and E. M. Sparrow, “Transfer characteristic of two-row
plate fin and tube heat exchanger configuration,” Int.J. Heat Mass
Transer, Vol.9 , pp.41-49,1976.
2.J. Stasiulevicius and A. Skrinska, “Heat Transfer of Finned Tube Bundles in
Crossflow”, Hemispher Publishing, New York, 1988.
3.W. M. Kays and A. L. London, “Compact Heat Exchangers”, McGrawHill, 2nd
ed,New York, 1964.
4.S. Kakac, A. E. Bergles and F. Mayinger, “Thermal-Hydraulic Fundamentals and
Design”, Hemispher Publishing, New York, 1981.
5.D. Q. Kern and A. D. Kraus, “Extended Surface Heat Transfer”, McGrawHill,
New York, 1972.
6.F. C. McQuistion and J. D. Paker, “Heat Ventilating and Air Conditioning”,
John Wiley & Sons, New York, 2nded, 1982.
7.H. Barrow, “A note on the frosting of heat pump evaporator surfaces,” J.
Heat Recovery System, Vol. 5, 1985.
8.M. M. Padki, S. A. Sherif and R. M. Nelson, “A simple method for molding
frost formation in different geometries” ASHRAE Trans., Vol. 95(2), pp. 1127-
1137, 1989.
9.T. Hosoda and H. Uzahashi, “Effect of frost on the heat transfer transfer
coefficient,” Hitachi Review, Vol. 16, 1967
10.C. T. Sanders, “The influence of frost formation and defrosting on the
performance of air coolers”, Ph. D. Dissertation, Technishe. Mogeschool,
Delft University, the Netherlands,1974.
11.D. L. O’Neal and D. R. Free, “A review of frost formation in simple
geometries,” ASHRAE Trans., Vol. 91(2), pp. 267-276, 1985.
12.D. L. O’Neal, “The effects of frost formation on the performance of a
parallel plate heat exchange”r, Ph. D. Dissertation, Dept. of Mechanical
Engng., Purdue University, 1983.
13.S. N. Kondepudi and D. L. O’Neal, “The effects of frost growth on extended
surface heat exchanger performance, a review,” ASHRAE Trans., Vol. 93(2),
pp. 258-274, 1987.
14.S. N. Kondepudi and D. L. O’Neal, “The effect of frost growth on the
performance of louvered fined tube heat exchangers,” Int. J. Refrig., Vol.
12, pp. 151-158, 1989.
15.S. N. Kondepudi and D. L. O’Neal, “The performance of triangular spine
fines under frosting conditions,” J. Heat Recovery Systems, Vol. 7(1), pp.
1-5, 1987.
16.S. N. Kondepudi and D. L. O’Neal, “Performance of finned tube heat
exchangers under frosting condition : I. Simulation model,” Rev. Int.
Froid., Vol.16, pp. 175-180, 1993.
17.S. P. Oskarsson, K. I. Krakow and S. Lin, “Evaporator models for operation
with dry, wet and frosted finned surfaces- Part 1 and 2,” ASHRAE Trans.,
Vol 96, pp. 373-392, 1990.
18.F. E. M. Saboya and E. M. Sparrow, “Local and average transfer coefficients
fir one-row plate fin and tube heat exchanger configurations,” ASME J. Heat
Transfer, Vol. 96, pp. 265-272, 1974.
19.G. Honing, and U. Hirdes, “A method for the numerical inversion of Laplace
transforms “. J. Comp. Appl. Math., Vol. 9, pp. 113-132,1984.
20.Vedat S. Arpaci, “Conduction Heat Transfer”, Addison-Wesley, New York, pp.
492-493, 1922.
21.S. N. Kondepudi and D. L. O’Neal, “Performance of finned tube heat
exchangers under frosting condition : II. Comparison of experimental data
with model,” Rev. Int. Froid., Vol.16, pp. 181-184, 1993.
22.E. C. Rosman, P. Carajilescov, and F. E. M. Saboya, “Performancr of One-
and Two-Row Tube and Plate Fin Heat Exchangers“. ASME J. Heat Transfer,
Vol. 106, pp. 627-632, 1984.
23.黃棋模,黃國峰,葉榮華和廖世平, “蒸發管結霜之研究”.Maritime Research Journal
Vol.14 pp.45-61,2003