| 研究生: |
王上瑜 Wang, Shang-Yu |
|---|---|
| 論文名稱: |
新穎薄膜晶種成長技術於大尺寸釔鋇銅氧超導晶體之研究 Growth of Large Single Grain Y-Ba-Cu-O Bulk Superconductors with Novel Thin Film Seed Technique |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 釔鋇銅氧 、大尺寸超導體 、薄膜晶種 、多重晶種法 |
| 外文關鍵詞: | YBCO, large superconductor bulk, thin film seed, multi-seeds |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜磊晶晶種相對於塊體單晶粒晶種有較少的缺陷,且有晶面方位可控性,可提升晶體成長品質,且達多顆晶種同時成長製程之可能性,使晶體成長面積擴展數倍。
本文探討單顆、多顆薄膜晶種於釔鋇銅氧單晶粒成長製程,包含操作溫度範圍、異質成核溫度及降溫速率掌控、晶種擺放方位及間距影響、多顆薄膜晶種晶體成長應用等。藉由比較不同降溫速率之長晶形貌,繪製連續冷卻晶體形貌變態圖,以期可做為工程量產製程設計參考。
YBCO超導體以(001)方位垂直樣品表面之性能為最佳,但薄膜晶種接種製程會產生非理想(103)晶面孕核或45°晶面旋轉,同時於非晶種處同質成核次晶粒。本研究特設計6℃/h、4℃/h兩段式降溫控制,以YBCO包晶溫度(1010℃)做為控制轉折點,成功成長出直徑大於25mm單晶粒塊材。
於多顆晶種成長晶體之研究,本團隊研究指出當兩顆晶種方位為(100)/(100)時,兩個晶粒界面會有明顯第二相堆積及微裂縫,產生弱接點效應造成塊材整體的擄獲磁場能力下降;當晶種間的方位為(110)/(110)時,成長出的晶粒界面無明顯第二相堆積,但當晶種間的距離大於10mm時,擄獲磁場分布圖仍呈現為雙峰,顯示仍存在弱接點效應。隨著晶種距離接近且小於5mm時,充磁後擄獲磁場分布圖形狀接近單峰,成功去除雙顆晶種法製程產生之弱接點現象。而本研究觀察偏光顯微鏡中的雙晶形貌,發現該製程之雙面接合成功與否與晶格方位誤差(misorientation)有關,並將該技術應用於四顆晶種晶體成長。
Epitaxial thin film seed has higher crystalline than bulk seed and it can improve the quality of crystal growth. The crystal orientation can also controlled by thin film seed., and it will use in multi-seed technique. By multi-seeding, the crystal growth area can extended several times.
The single crystal growth with NdBCO thin film seeds is discussed in this study including multi-seed technique. The factor likes operation temperature window, the cooling rate during nucleation, the seed setting distance, and the seed setting orientation should be concerned and optimized. The crystal growth morphology is concluded into the “continues cooling morphology transformation diagram” for the mass production dependence.
It is suggested that the (001) single grain perpendicular to the bulks surface, shows the best performance. The (103) orientation, (001) 45° in plane, undesirable grain boundary, and random orientated subgrains are needed to be eliminated. We got the large single crystal YBCO bulks larger than 25mm successfully, with the special two step cooling fabrication. First use 6℃/h cooling, and then change the rate into 4℃/h at the YBCO peritectic temperature 1010℃.
In the multi-seeding fabrication, it is indicated that the second phase agglomeration is observed, with the seed (100)/(100) facet textured growing. Weak ling effect is displayed, limited the superconductive current flowing in these samples. Some precious study reports that the (110)/(110) facet textured growing can avoid this condition. In this study, the (110)/(110) facet textured growing samples with the seed distance larger than 10mm shows the multiple peaks in the trapped magnetic field profile distribution, implied the weak linkage still exits. With the seed distance is 5mm, a symmetry cone shape trap field distribution with the maximum value 2201Gauss. We assumed that the orientation alignment between two textured grains plays an important rule, and can be supported in the twin structure observed in the OM images. This technique can also be used in the four seeds growth texture grains samples in different kind of YBCO pellets.
1. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R.L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure.” Phys. Rev. Lett., 58, 908 (1987).
2. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, “Superconductivity at 39K in magnesium diboride.” Nature 410, 63-64 (2001).
3. K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya. “Superconductivity in compressed lithium at 20 K.” Nature 419, 597 - 599 (2002).
4. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials.” World Scientific, (1992).
5. Y. Shiohara and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials.” Mat. Sci. Eng. 1-2, R19 (1997).
6. JCPDS-ICDD, PDF-number:86-0472.
7. T. Hatano, A. Matsushita, K. Nakamura, Y. Sakka, T. Matsumoto and K. Ogawa, “Superconducting and Transport Properties of B-Y-Cu-O Compounds –Orthorhombic and Tetragonal Phases.” Jpn. J. Appl. Phys. 26, L721 (1987).
8. T. B. Lindemer, J. F. Hunley, J. E. Gates, Jr., A. L. Sutton, J. Brynestad, C. R. Hubbard and P. K. Gallagher, “Experimental and Thermodynamic Study of Nonstoichiometry in 〈YBa2Cu3O7-x〉.” J. Am. Ceram. Soc. 72, 1775 (1989).
9. B. J. Lee and D. N. Lee, “Thermodynamic Evaluation for the Y2O3–BaO–CuOx System.” J. Am. Ceram. Soc. 74, 78 (1991).
10. R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ.” Nature 329, 423 (1987).
11. M. Kambara, T. Umeda, M. Tagami, X. Yao, E. A. Goodlin and Y. Shiohara, “Construction of the Quasi-ternary PhaseDdiagram in the NdO1.5BaO-CuOx system in an air atmosphere. Pt.1. equilibrium tie lines in the Nd1+xBa2-xCu3O6+ delta solid solution and liquid region” J. Am. Ceram. Soc. 81, 2116 (1998).
12. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fastnacht and H.D. Keith,” High critical currents in Y‐Ba‐Cu‐O superconductors.” Appl. Phys.Lett. 52 2074 (1988).
13. 金重勳編, 磁性技術手冊,中華民國磁性技術協會出版,民國九十一年七月。
14. K. Salama, B. Selvamanickam, L. Gao and K. Sun, “High current density in bulk YBa2Cu3Ox superconductor.” Appl. Phys. Lett.54, 2352 (1989).
15. H. Hojaji, K.A. Michael, A. Barkatt, A.N. Thorpe, F.W. Matthew, I.G. Talmy, D.A. Haught and S. Alterescu, “A comparative study of sintered and melt-grown recrystallized YBa2Cu3Ox.” J. Mater. Res. 4 28 (1989).
16. C. Varanasi and P.J. McGinn, “Effect of YBa2Cu3O7−x grain size on the nucleation of Y2BaCuO5 during melt texturing.” Mater. Lett. 17, 205 (1993).
17. M. Murakami, M. Morita, K. Doi, and M. Miyamoto, “A New Process with the Promise of High Jc in Oxide Superconductors.” Jpn. J. Appl. Phys. Part 228, 1189 (1989).
18. H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka and S. Tanaka, Advances in Superconductivity Ⅱ285 (1990).
19. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, “The properties of YBCO superconductors prepared by a new approach: the powder melting process” Supercond. Sci. Technol. 3, 490 (1990).
20. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, “High Jc YBCO superconductors Prepared by the “Powder Melting Process” IEEE Trans. Mag. 27, 912 (1991).
21. M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, “Quench and melt growth (QMG) process for large bulk superconductor fabrication“ Advanced Superconductors, 3, 733 (1991).
22. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, “High magnetic flux trapping by melt-grown YBaCuO superconductors.” Jpn. J. Appl. Phys. 30, L1157 (1991).
23. X. Chaud, D. Isfort, E. Beaugnon and R. tournier, “Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm.” Physica C 341-348, 2413-2416 (2000).
24. T. Izumi and Y. Shiohara, “Growth mechanism of YBa2Cu3Oy superconductors prepared by the horizontal Bridgeman method.” J. Mat. Res. 7, 16 (1992).
25. M. Murakami, “Melt Processed High-Temperature Superconductors.” World Scientific, (1992).
26. R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ.” Nature 329, 423 (1987).
27. H. Fujimoto, C. Cai and E. Ohtabara, “Sm–Ba–Cu–O bulk superconductors melt-processed in air.” Physica C 372-376, 1111 (2002).
28. S. H. Hsu, I. G. Chen and M. K. Wu, “Preparation of c-oriented Nd-Ba-Cu-O/Ag melt-growth sample in air” Supercond. Sci. Technol. 15, 653-659 (2002).
29. Y. A. Jee, G. W. Hong, C. J. Kim and T. H. Sung, “Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y” Supercond. Sci. Technol. 11, 650-658 (1998).
30. S. I. Yoo, N. Sakai, H. Kojo, S. Takebayashi, N. Hayashi, M. Takahashi, K. Sawada, T. Higuchi and M. Murakami, “Progress in melt processing of Nd-Ba-Cu-O superconductors” IEEE Trans. Appl. Supercond. 7 , No. 2 (1997).
31. C. Cai, K. Tachibana and H. Fujimoti, “Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed.” Supercond. Sci. Technol. 13, 698 (2000).
32. C. Cai and H. Fujimoto, “Effects of Nd123/MgO Thin Film and MgO Single-crystal Seeds in Isothermal Solidification of YBaCuO/Ag.” J. Mater. Res. 15, No. 8 (2000).
33. C. Cai, H. Mori, H. Fujimoto, H. Liu, S. Dou, “Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process.” Physica C 357-360, 734 (2001).
34. C. Cai and H. Fujimoto, “Stable production of large single-domain Y1.8Ba2.4Cu3.4Oy/Ag by isothermal solidification.” Physica C 357-360, 709 (2001).
35. H. Fujimoto, H. Ozaku, E. Ohtabara, “Sm–Ba–Cu–O bulk superconductors melt processed in air, using Nd123/MgO thin film cold seeding.” Physica C 386, 198 (2003).
36. M. Oda, X. Yao, Y. Yoshida and H. Ikuta, “Melt-textured growth of (LRE)–Ba–Cu–O by a cold-seeding method using SmBa2Cu3Oy thin film as a seed.” Supercond. Sci. Technol. 22, 075012 (6pp) (2009).
37. C. J. Kim, Y. A. Jee and G. W. Hong, “Variables affecting the fabrication of single grain YBa2Cu3O7-y superconductors by the top-seeded melt growth process.” Supercond. Sci. Technol. 13, 709 (2000).
38. C. J. Kim, Y. A. Jee, S. C. Kwon, T. H. Sing and G. W. Hong, “Control of YBCO growth at the compact/substrate interface by bottom seeding and Yb2O3 coating in seeded melt-growth processed YBCO oxides using a MgO substrate.” Physica C 315, 263-270 (1999).
39. Y. Nakamura, A. Endo and Y. Shiohara, “The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide.” J. Mater. Res. 11, 1094 (1996).
40. A. Endo, H.S. Chauhan, Y. Nakamura and Y. Shiohara, “Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7−x.” J. Mater. Res. 11, 1114 (1996).
41. M. Kambara, N. Hari Babu, Y. H. Shi, D.A. Cardwell, “Growth of melt-textured Nd-123 by hot seeding under reduced oxygen partial pressure.” J. Mater. Res. 16, 1163 (2001).
42. N. Hayashi, P. Diko, K. Nagashima, S.I. Yoo, N. Sakai, M. Murakami, “Fabrication of large single-domain Sm123 superconductors by OCMG method.” Mat. Sci. Eng. B 53, 104 (1998).
43. W. Lo, D.A. Cardwell, “Investigation of the controlled growth of large undoped and Pt-containing YBCO pseudo-crystals.” Mat. Sci. Eng. B 53, 45 (1998).
44. S. M. Rao, J. K. Srivastava, K. S. Law, R. H. Chang, H. I. Chung and M. K. Wu, “Growth mechanism in the crystallization of YBa2Cu3O6+ from peritecitc melts.” Supercond. Sci. Technol. 14, 958-965 (2001).
45. M. Morita, K. Kimura, K. Miyamoto, K. Sawano and M. Tanaka, “Process for forming composite film on aluminum or aluminum alloy article surface and resulting product.” US Patent 5308709 (1994).
46. T. Meignan, P. J. Mcginn and C. Varansi, “Seeded melt texture growth processing of YBa2Cu3O6+x with Yb2O3 coatings.” Supercond. Sci. Technol. 10, 109-112 (1997).
47. D. Shi, K. Lahiri, D. Qu and S. Sagar, “Surface nucleation, domain growth mechanisms, and factors dominating superconducting properties in seeded melt grown YBa2Cu3Ox.” J. Mater. Res., 12, no.11, 3036-3045 (1997).
48. P. Schatzle, G. Krabbes, G. Stover, G. Fuchs and D. Schlafer, “Multi-seeded melt crystallization of YBCO bulk material for cryogenic applications.” Supercond. Sci. Technol. 12, 69–76 (1999).
49. T. Y. Li, C. L. Wang, L. J. Sun, S. B. Yan, L. Cheng, X. Yao, J. Xiong, B. W. Tao, J. Q. Feng, X. Y. Xu, C. S. Li, and D. A. Cardwell, “Multiseeded melt growth of bulk Y–Ba–Cu–O using thin film seeds.” J. Appl. Phys. 108, 023914 (2010).
50. M. Sawamura, M. Morita, H. Hirano, “New multi-seeding method of RE–Ba–Cu–O superconductor.” Physica C, 378–381, 617–621 (2002).
51. J. G. Noudem, S. Meslin, D. Horvath, C. Harnois, D. Chateigner, B. Ouladdiaf, S. Eve, M. Gomina, X. Chaud, and M. Murakami, “Infiltration and top seed growth-textured YBCO bulks with multiple holes.” J. Am. Ceram. Soc, 90, 2784–2790 (2007).
52. M. Tomita, M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.” Nature, 421, 517-520 (2003).
53. S. Haindl, M. Eisterer, H. W. Weber, N. Hari Babu, and D. A. Cardwell, “Grain boundaries in multi-seeded melt-grown superconductors.” IEEE Trans. Appl. Supercond., 15, 3129-3122 (2005).
校內:2017-08-31公開