簡易檢索 / 詳目顯示

研究生: 施丞達
Shih, Cheng-Ta
論文名稱: 化學氣相沈積法製備氮化鎵奈米線及其特性研究
The Preparation and Characterization of GaN Nanowires by Chemical Vapor Deposition
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 光激發光光譜奈米線氮化鎵氣-液-固(VLS)機制場發射
外文關鍵詞: GaN, photoluminescence, field emission
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用鉑當催化劑,以氣-液-固(VLS)機制分別在矽基板、藍寶石基板和石英基板上成功長出氮化鎵奈米線。藉由調變製程溫度,可改變其奈米線直徑大小;改變通入載氣流量的比例,則可以使奈米線分布均勻和其密度、長度增加。由表面元素分析(XPS), Ga3d束縛能符合Ga-N之鍵結能,可證實本系統可成長出氮化鎵。在表面形貌分析部份,可以觀察到氮氣載氣流量比例的提升,對其氮化鎵奈米線之外貌並沒有顯著影響,奈米線直徑分佈約50~100nm。而氫氣載氣流量比例的提升,當氫氣達到400sccm以上時,奈米線結構即有明顯改變,形成寬度約為100nm之奈米帶,且其中一面具有兩排奈米凸起物,其凸起物產生與製程結束後通入氨氣持續成長有關。此凸起結構亦能將場發射起始電場降低至8.5 V/μm。發光特性部分,氮氣流量比例的提升,對其光激發光譜的鋒值並不造成影響,皆位於3.37eV左右;但氫氣流量比例的提升,其光激發光譜的鋒值會呈現紅移的現象,從3.38紅移至3.25eV,推測可能是因氫氣造成氮化鎵內部產生鎵空孔有關。藉由改變基板材料,可發現使用與氮化鎵晶格常數匹配度較佳的藍寶石基板,所成長出之氮化鎵奈米線方向性較佳,且從光激發光譜中,並沒有發現到黃光帶的出現,顯示使用藍寶石基板,所成長出之氮化鎵奈米線缺陷較少。

    Gallium nitride (GaN) nanowires with a diameters of 50~100nm were formed on the platinum coated silicon substrate by chemical vapor deposition method in different carrier gas ratios (N2, H2). This result shows that the platinum is an effective catalyst for growth the one dimension GaN materials. The crystal structure, optical and electrical properties of GaN nanowires were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), Raman scattering, filed emission, and high resolution transmission electron microscopy techniques (HRTEM). XPS and Raman scattering spectra indicated that the gallium oxide was not observed in the GaN nanowire. The XRD and TEM images indicate that the formed GaN nanowires are wurtzite structure and the growth direction of protrusion on surface is [0001]. The PL measurement reveals that the ultraviolet light emission is near the bang gap of wurtzite GaN at 3.4eV within different N2 carrier gas. On the other hand, the red shift of the PL peak from 3.38eV to 3.25eV is observed within the H2 carrier gas. The field emission results indicate that the GaN nanowires with protrusions exhibit lower threshold field and higher field enhancement factor (β) compared with the GaN samples with a smooth surface.

    中文摘要...........................................I 英文摘要..........................................II 目錄.............................................III 圖目錄............................................VI 表目錄...........................................XII 第一章 緒論........................................1 1-1 前言...........................................1 1-2 奈米材料的基本物理效應.........................3 1-3 實驗動機與目的.................................5 第二章 奈米線成長原理和氮化鎵文獻回顧..............7 2-1 氮化鎵材料概述.................................7 2-2 奈米線成長原理.................................8 2-2-1 奈米碳管模板法...............................9 2-2-2 VLS(vapor-liquid-solid)法...................11 2-2-3 VS(vapor -solid)法..........................12 2-3 氮化鎵奈米線發展現況..........................14 2-3-1 模板成長高度有序氮化鎵奈米線................14 2-3-2 氮化鎵奈米管................................16 2-3-3 基板控制氮化鎵奈米線成長方向................17 第三章 實驗流程與分析儀器.........................31 3-1 實驗流程......................................31 3-1-1 實驗材料....................................31 3-1-2 基板前處理..................................32 3-1-3 化學氣相沈積實驗步驟........................33 3-2 實驗分析儀器..................................34 3-2-1 掃描式電子顯微鏡(SEM).......................34 3-2-2 低掠角X 光薄膜繞射儀(GIAXD) ................34 3-2-3 微拉曼光譜儀(Micro-Raman Spectrumeter)....35 3-2-4 微光激發光譜儀(Photoluminescence) ..........37 3-2-5 化學分析電子光譜儀(ESCA)....................38 3-2-6 電子場發射量測儀............................39 第四章 實驗結果與討論.............................48 4-1 改變成長溫度..................................48 4-1-1 奈米線表面形貌分析..........................48 4-1-2 晶體結構分析................................49 4-1-3 表面元素分析................................49 4-2 通入不同氨氣與氮氣混合比例....................58 4-2-1 試片沈積物均勻性............................58 4-2-2 奈米線表面形貌分析..........................59 4-2-3 晶體結構分析................................59 4-2-4 顯微拉曼分析................................60 4-2-5 光激發光分析................................61 4-3 通入不同氨氣與氫氣混合比例....................67 4-3-1 試片沈積物均勻性............................67 4-3-2 奈米線表面形貌分析..........................67 4-3-3 晶體結構分析................................69 4-3-4 顯微拉曼分析................................70 4-3-5 光激發光分析................................70 4-4 改變基板材料..................................78 4-4-1 奈米線表面形貌分析..........................78 4-4-2 晶體結構分析................................79 4-4-3 顯微拉曼分析................................79 4-4-4 光激發光分析................................80 4-5 奈米線場發射分析..............................85 第五章 結論.......................................94 參考文獻.. .......................................96

    [1] S.Iijima, “ Helical microtubules of graphitic carbon”, Nature, 354,56-58 (1991).
    [2] S. Nakamura, M. Senoh, N. Iwasa, and Shin-ichi Nagahama,“High-power InGaN single- quantum- well- structure blue and violet light-emitting diodes”, Appl. Phys. Lett. 67, 1868 (1995).
    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi- quantum- well- structure laser diodes with a long lifetime”, Appl. Phys. Lett. 70, 868 (1997).
    [4] J. W. Orton and C. T. Foxon, “The electron mobility and compensation in n-type GaN”, Semicond. Sci. Technol. 13, 310 (1998).
    [5] 史光國, “GaN 藍色發光及雷射二極體之發展現況”, 工業材料 126.
    [6] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y.Q. Mao,” Large-scale synthesis of single crystalline gallium nitride nanowires “, Appl. Phys. Lett., 75, 2455(1999).
    [7] J. Goldberger, R.He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang.,“Single-crystal gallium nitride nanotubes”, Nature, 422, 599 (2003).
    [8] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays”, Nature materials, 3, 524-528 (2004).
    [9] W. P. Halperin, “Quantum size effects in metal particles”, Rev. Mod. Phys., 58, 533 (1986).
    [10] Ball P and Garwin, Laura, “Science at the atomic scale”, Nature, 355,761 (1992).
    [11] http://www.opt.ees.saitama-u.ac.jp/~zyoho/t-oka/epitaxy.html
    [12] Chiao-Yi Hwang, Ph. D. Mechenics and Materials Science, Rutgers University, Piscataway, NJ (1995).
    [13] M. Leroux, B. Gil, in: J.H. Edgar, S.S. Strite, I. Akasaki, H. Amano(Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, 1999, p. 45.
    [14] D. C. Look and J. R. Sizelove, “Predicted maximum mobility in bulk GaN”, Appl. Phys. Lett., 79, 1133 (2001).
    [15] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier,“Hole conductivity and compensation in epitaxial GaN:Mg layers ”Phys. Rev. B., 62, 10867 (2000).
    [16] D. Doppalapudi, T. D. Moustakas, in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, Vol. 4, p. 57 (2002).
    [17] S. Porowski, Grzegory, in: J.H. Edgar (Ed.), Properties of Group III Nitrides, INSPEC, The Institution of Electrical Engineers, Stevenage, UK, p. 76 (1994).
    [18] R. R. Reeber and K. Wang, “Lattice parameters and thermal expansion of GaN”, Journal of Materials Research, 15, 40 (2000).
    [19] D. I. Florescu, V. M. Asnin, Fred H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, and I. Ferguson, “Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy”, Appl. Phys. Lett., 77, 1464 (2000).
    [20] S. Krukowski, M. Leszcynski, S. Porowski, in: J.H. Edgar, S.S. Strite, I. Akasaki, H. Amano (Eds.), INSPEC, The Institution of Electrical Engineers, Stevenage, UK, p. 21 (1999).
    [21] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, and M. V. Swain, “Nanoindentation of epitaxial GaN films”, Appl. Phys. Lett., 77, 3373 (2000).
    [22] I. Yonenaga, T. Hoshi and A. Usui, “Hardness of Bulk Single-Crystal Gallium Nitride at High Temperatures”, Jpn. J. Appl. Phys., 39, L200 (2000).
    [23] I. Yonenaga and K. Motoki, “Yield strength and dislocation mobility in plastically deformed bulk single-crystal GaN”, J. Appl. Phys., 90, 6539 (2001).
    [24] D. Zhou and S. Seraphin, “Production of silicon carbide whiskers from carbon nanoclusters ”, Chem. Phys. Lett., 222, 233(1994).
    [25] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes”, Acc. Chem. Res., 32, 435 (1999).
    [26] A. M. Alper ed., “Phase Diagram in Advanced Ceramics”, Academic Press. (1995).
    [27] X. Duan and C. M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires”, J. Am. Chem. Soc., 122, 188 (2000).
    [28] M. S. Gudiksen and C. M. Lieber, “Diameter-Selective Synthesis of Semiconductor Nanowires”, J. Am. Chem. Soc., 122, 8801 (2000).
    [29] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”,Science, 270, 1791(1995).
    [30] W. E. Buhro, K. M. Hickman, T. J. Trentler, “Turning down the heat on semiconductor growth: Solution-chemical syntheses and the solution-liquid-solid mechanism”, Adv. Mater., 8, 685(1996).
    [31] C. C. Chen, C. Y. Chao, and Z. H. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods”, Chem. Mater, 12,1516 (2000).
    [32] L. Manna, E. C. Scher, and A. P. Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals” J. Am. Chem. Soc., 122, 12700 (2000).
    [33] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape control of CdSe nanocrystals”, Nature,404, 59 (2000).
    [34] S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y. W. Chung, “Semiconductor nanowires from oxides”, J. Mater. Res.,14(12), 4503, (1999).
    [35] L.C. Chen, S.W. Chang, C.S. Chang, C.Y. Wen, J-J. Wu, Y.F. Chen, Y.S. Huang, K.H. Chen, “Catalyst-free and controllable growth of SiCxNy nanorods”, J. Phys. Chem. Solids, 62, 1567 (2001).
    [36] M. He, I. Minus, P. Zhou, S. N. Mohammed, J. B. Halpern, R. Jacobs, W. L. Sarney, L. Salamanca-Riba, and R. D. Vispute, “Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3”, Appl. Phys. Lett., 77(23), 3731 (2000).
    [37] W. Han, S. Fan, Q. Li, W. Liang, B. Gu and D. Yu,“Continuous synthesis and characterization of silicon carbide nanorods ”, Chem. Phys. Lett., 265, 374(1997).
    [38] W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, and D. Yu,“Synthesis of silicon nitride nanorods using carbon nanotube as a template”, Appl. Phys. Lett., 71(16), 2271(1997).
    [39] T. Ogino and M. Aoki, “Mechanism of Yellow Luminescence in GaN”, Jpn. J. Appl. Phys. 19, 2395 (1980).
    [40] Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport”, Chem.Mater.12, 605-607 (2000).
    [41] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He,and P. Yang, “Watching GaN Nanowires Grow”, Nano. Lett., 3, 867-869 (2003).
    [42] Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires”, Nano. Lett., 2, 83 (2002).
    [43] M. He, P. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern,“Growth of GaN nanowires by direct reaction of Ga with NH3”, Journal of Crystal Growth, 231, 357-365 (2001).
    [44] A. M. S. ElAhl, M. He, P. Zhou, and G. L. Harris , “Systematic study of effects of growth conditions on the (nano-, meso-, micro)size and (one-, two-, three-dimensional) shape of GaN single crystals grown by a direct reaction of Ga with ammonia”, J. Appl. Phys., 94, 7749 (2003).
    [45] Thin-Film Deposition: Principles and Practice, edited by Donald L. Smith, McGraw-Hill, New York, p. 135 (1995).
    [46] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, “Polarity determination for GaN films grown on (0001) sapphire and high-pressure-grown GaN single crystals”, Appl. Phys. Lett. 73, 668 (1998).
    [47] M. H. Xie, S. M. Seutter, W. K. Zhu, L. X. Zheng, Huasheng Wu, and S. Y. Tong, “Anisotropic Step-Flow Growth and Island Growth of GaN(0001) by Molecular Beam Epitaxy”, Phys. Rev. Lett. 82, 2749 (1999).
    [48] G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, L. D.Zhang, “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes”, Materials Science and Engineering : A, 286, 165–168 (2000).
    [49] http://www.veeco.com/learning/learning_vaporelements.asp
    [50] MJ Schoning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors(BioFETs)”, Analyst, 127, 1137-1151 (2002).
    [51] William G. Moffatt, “The handbook of binary phase diagrams”, Schenectady, New York: Geniurn Pub (1990).
    [52] C. Y. Nam, J. Y. Kim, and J. E. Fischer, “Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth”, Appl. Phys. Lett., 86, 193112 (2005).
    [53] H-D Xiao, H-L Ma, C-S Xue, J. Ma, F-J Zong, X-J Zhang, F. Ji, “Synthesis and structural properties of GaN powders”, Materials Chemistry and Physics, 88, 180-184 (2004).
    [54] V. Matolín, S. Fabík, J. Glosík, L. Bideux, Y. Ould-Metidji, B. Gruzza, “Experimental system for GaN thin films growth and in situ characterisation by electron spectroscopic methods”, Vacuum, 76, 471–476 (2004).
    [55] C. G. Zhang, W. D. Chen, L. F. Bian, S. F. Song, C. C. Hsu, “Preparation and characterization of GaN films by radio frequency magnetron sputtering and carbonized-reaction technique”, Applied Surface Science, 252, 2153-2158 (2006).
    [56] S. D. Wolter, J. M. DeLucca, S. E. Mohney, R. S. Kern and C. P. Kuo, “An investigation into the early stages of oxide growth on gallium nitride”, Thin Solid Films, 371, 153-160 (2000).
    [57] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation ”, Solid State Comm. 109, 677 (1999).
    [58] J. M. Zhang, T. Ruf, and M. Cardona, “Raman spectra of isotopic GaN”, Phys. Rev. B, 56, 22 (1997).
    [59] H. L. Liu, C. C. Chen, C. T. Chia, C. C. Yeh, C. H. Chen, M. Y. Yu, S. Keller and S. P. DenBaars, “Infrared and Raman-scattering studies in single-crystalline GaN nanowires ”, Chem. Phys. Lett., 345, 245 (2001).
    [60] J. Kim, H. M. So, J. W. Park, J. J. Kim, J. Kim, C. J. Lee, and S. C. Lyu, “Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition”, Appl. Phys. Lett., 80, 3548 (2002).
    [61] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and Ch. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires”, Nano Lett., 4, 433 (2004).
    [62] B. Ha, S. H. Seo, J. H. Cho, C. S. Yoon, J. Yoo, G-C Yi, C. Y. Park, and C. J. Lee, “Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires”, J. Phys. Chem. B, 109, 11095-11099 (2005).
    [63] S. Ito, H. Fujioka, J. Ohta, A. Kobayashi, T. Honke, H. Miki and M. Oshima, “Effect of ambient gas on pulsed laser deposition of group III nitrides ”, Thin Solid Films, 457, 118–121 (2004).
    [64] N. Kobayashi and Y. Kobayashi, “In-situ optical monitoring of surface morphology andstoichiometry during GaN metal organic vapor phase epitaxy”, Applied Surface Science, 159-160, 398-404 (2000).
    [65] C. Y. Nam, D. Tham, and J. E. Fischer, “Effect of the polar surface on GaN nanostructure morphology and growth orientation”, Appl. Phys. Lett., 85, 5676 (2004).
    [66] G. Kipshidze, B. Yavich, A. Chandolu, J. Yun, V. Kuryatkov, I. Ahmad, D. Aurongzeb, M. Holtz, and H. Temkin, “Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition”, Appl. Phys. Lett., 86, 033104 (2005).
    [67] X. H. Lu, P. Y. Yu, L. X. Zheng, S. J. Xu, M. H. Xie, and S. Y. Tong, “Evidence for a Type-II band alignment between cubic and hexagonal phases of GaN”, Appl. Phys. Lett., 82, 1033 (2003).
    [68] B. Qu, X.H. Zheng, Y.T. Wang, D.P. Xu, S.M. Lin, H. Yang, J.W. Liang, “Orientation relationship between hexagonal inclusions and cubic GaN grown on GaAs(001) substrates”, Journal of Crystal Growth, 227-228, 399-403 (2001).
    [69] J. K. Jian, X. L. Chen, Q. Y. Tu, Y. P. Xu, L. Dai, and M. Zhao, “Preparation and Optical Properties of Prism-Shaped GaN Nanorods”, J. Phys. Chem. B, 108, 12024-12026 (2004).
    [70] S. M. Lee, M. A. Belkhir, X. Y. Zhu, Y. H. Lee, Y. G. Hwang, and T. Frauenheim, “Electronic structures of GaN edge dislocations”, Phys. Rev. B, 61, 23 (2000).
    [71] T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium”, Phys. Rev. B 45, 10942–10950 (1992).
    [72] L. Liu and J. H. Edgar, “Substrates for gallium nitride epitaxy”, Materials Science and Engineering R, 37, 61–127 (2002).
    [73] Jörg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett., 69, 503 (1996).
    [74] B. D. Liu, Y. Bando, C. C. Tang, F. F. Xu, and D. Golberg, “Excellent Field-Emission Properties of P-Doped GaN Nanowires”, J. Phys. Chem. B, 109, 21521-21524 (2005).
    [75] C. I. Wu and A. Kahn, “Negative electron affinity and electron emission at cesiated GaN and AlN surfaces”, Applied Surface Science, 162–163, 250–255 (2000).
    [76] B. L. Ward, O.-H. Nam, J. D. Hartman, S. L. English, B. L. McCarson, R. Schlesser, Z. Sitar, R. F. Davis, and R. J. Nemanich, “Electron emission characteristics of GaN pyramid arrays grown via organometallic vapor phase epitaxy”, J. Appl. Phys., 84, 5238 (1998).
    [77] I. Berishev, A. Bensaoula, I. Rusakova, A. Karabutov, M. Ugarov, and V. P. Ageev, “Field emission properties of GaN films on Si(111)”, Appl. Phys. Lett., 73, 1808 (1998).
    [78] C. Hubert and J. Levy, “Nanometer-scale imaging of domains in ferroelectric thin films using apertureless near-field scanning optical microscopy”, Appl. Phys. Lett., 78, 3229 (2001).
    [79] T. Yamashita, S. Hasegawa, S. Nishida, M. Ishimaru, Y. Hirotsu, and H. Asahi, “Electron field emission from GaN nanorod films grown on Si substrates with native silicon oxides”, Appl. Phys. Lett., 86, 082109 (2005).
    [80] B. Liu, Y. Bando, C. Tang, F. Xu, J. Hu, and D. Golberg, “Needlelike Bicrystalline GaN Nanowires with Excellent Field Emission Properties”, J. Phys. Chem. B, 109, 17082-17085 (2005).
    [81] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., 76, 2071 (2000).
    [82] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Y. K. Tseng and S. C. Kung, “ZnO nanopencils: Efficient field emitters”, Appl. Phys. Lett., 87, 013110 (2005).
    [83] T Azuhata, T Sota, K Suzuki and S Nakamura, “Polarized Raman spectra in GaN”, J. Phys., Condens. Matter, 7, L129-133 (1995).
    [84] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc., 123, 2791 (2001).
    [85] Claudia Bungaro, Krzysztof Rapcewicz, and J. Bernholc, “Ab initio phonon dispersions of wurtzite AlN, GaN, and InN”, Phys. Rev. B, 61, 6720 (2000).

    下載圖示 校內:2008-07-25公開
    校外:2008-07-25公開
    QR CODE