簡易檢索 / 詳目顯示

研究生: 陳守得
Chen, Shou-De
論文名稱: 以微波電漿化學氣相沉積法低溫合成奈米碳管及其應用於微熱傳之冷卻
Ultra Low Temperature growth of CNTs by Microwave Plasma CVD and its use in Micro-scale Heat Transfer Cooling
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 143
中文關鍵詞: 衝擊冷卻奈米碳管微機電技術
外文關鍵詞: MEMS technology, impingement cooling, carbon nanotubes
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   低溫合成準直性佳且石墨程度良好之奈米碳管是本實驗的主軸之一。本實驗於低溫製程下,藉由改變鎳膜厚度、製程溫度、MW功率及成長時間與預處理時間等實驗參數,成功地以450℃合成出準直性佳之奈米碳管,並更進一步以260℃的基板溫度合成出準直性佳之奈米碳管。藉由拉曼光譜分析,得知以260℃合成之多壁奈米碳管,其ID / IG的比值為0.2356;而以奈米碳管為場發射源所得到的起始電場為2.849V/μm;當外加電場為5V/μm時,可獲得約179.759μA/cm2,近0.2mA/cm2之放射電流密度。

      本研究之另一目的是以實驗的方法探討黏附粗糙面於熱晶片上之微噴流衝擊冷卻(Impingement cooling)熱傳行為分析。粗糙面的製作是利用TMAH蝕刻液對矽晶圓作非等向性濕蝕刻,製作而得之粗糙面,其高度約為150μm,及兩種不同肋節距。目前對於以矽當作粗糙面作微噴流之衝擊冷卻實驗文獻及相關資料,目前為止,尚無發現。然而受到機台故障的限制及時間不足的壓迫性,目前僅以熱傳導性佳的矽材當作粗糙面,以因應未來以奈米碳管作為粗糙面之準備。

      以矽基材為粗糙面之衝擊冷卻實驗,吾人是以雷諾數(Reynolds number)介於8~320之間的自然噴流,衝擊附粗糙面之微熱晶片,平板至噴嘴距離Z/B介於4~3200之間。吾人以熱晶片上的溫度感測器量測停滯點及側向下游的溫度分佈,並用以探討其中之熱傳變化,以及微噴流衝擊在附粗糙面之熱晶片上的熱傳特性。實驗結果發現,附粗糙面之微熱晶片之衝擊冷卻實驗,其停滯點之最高熱傳係數值會和衝擊平滑熱晶片一樣受到出口雷諾數的影響呈現反比的關係,發生在壁面與噴嘴出口距離為數十倍至數百倍不等之噴嘴寬度的位置上,且該位置與微噴流之崩潰點位置相近,經由統計回歸分析,所得之關係式為 ,與紊流崩潰長度Lf=16000/Re甚接近。而本研究很成功地將停滯點及平均熱傳係數藉由無因次參數(Re、Z/B、L、B/B0及P/E)的引入,而建立其經驗相關式。

      The objective of this work is to grow well-alignment and high degree of graphitization of CNTs at ultra low temperature. In the present work here, we have succeeded in varying such parameters as the Ni thickness, the MW power, the growth time and the pretreatment time to synthesize almost none amorphous carbon of CNTs. Furthermore, we have also succeeded in synthesizing well-alignment CNTs at ultra low temperature, i.e. 450℃or 260℃. The Raman optical spectrum intensity of this multi-wall carbon nanotubes were grown at 260℃is 0.2356. Another important property of CNTs is the electron-field-emission performance. It is the turn-on electric field is 2.849V/μm. As the applied electric field is 5V/μm, we can obtain an emission electric current density approximately 0.2mA/cm2.
      This second objective of this study is to perform the micro-jet impingement cooling heat transfer over the rib-roughened thermal chip. The rib-roughened thermal chip was made by wet etching the Si (100) wafer .Until now, however, no one was reported the micro-jet impingement cooling heat transfer over the rib-roughened made by Si on a thermal chip.
      For the micro-jet impingement cooling experiments, the local Nusselt numbers distribution along the rib-roughened thermal chip were measured for the Reynolds number varying from 16 to 640, and the nozzle-to-spacing ratio from 4 to 3200. In addition, different size of nozzles, i.e. 25μm, 50μm, 100μm was used to ensure different structures of micro-jet impinging on the wall. The effect of micro-jet impingement cooling varies with the width of the nozzles. It is found that the location for the occurrence of maximum stagnation point Nusselt number decreases with increasing Reynolds number. This is attributed to the decrease of the breakdown length of the micro jet. The maximum stagnation point Nusselt number is expected to occur at the location where the jet breaks down. A correlation for the location where the maximum stagnation point Nusselt number occurs with the Reynolds numbers can be obtained as (Z/B)max = 27966/Re.
      An attempt was first made to correlate the stagnation point Nusselt number in terms of relevant no dimensional parameters such as the Reynolds number and Z/B. This is done by first normalizing Z/B by dividing L, i.e. Z/BL. The correlation results show that all the stagnation point Nusselt numbers at the same Reynolds number can collapse approximately into a single curve, and these correlations are very successful. Similar kinds of correlations have also been obtained for both the average Nusselt numbers.

    目錄………………………………………………………………………Ⅰ 表目錄……………………………………………………………………Ⅴ 圖目錄……………………………………………………………………Ⅵ 符號說明…………………………………………………………………ⅩⅣ 第一章 緒論………………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 研究動機…………………………………………………………2 第二章 理論基礎與文獻回顧………………………………………3 2-1 奈米碳管的結構…………………………………………………3 2-2 奈米碳管的電性…………………………………………………4 2-3 奈米碳管的機械性質……………………………………………4 2-3.1 熱傳導性質…………………………………………… 4 2-3.2 材料性質……………………………………………… 5 2-4 合成奈米碳管的機制……………………………………………6 2-4.1 電弧放電法…………………………………………… 6 2-4.2 雷射氣化法…………………………………………… 7 2-4.3 化學氣相沉積法……………………………………… 8 2-5 奈米碳管未來應用潛在產品………………………………… 10 第三章 合成奈米碳管實驗方法與步驟………………………… 13 3-1 實驗流程………………………………………………………………………13 3-2 實驗材料的選擇與準備……………………………………14 3-3 合成奈米碳管之實驗步驟…………………………………15 3-4 合成奈米碳管之實驗儀器及其表面型態、微結構分析設備…16 第四章 參數條件下低溫合成奈米碳管之探討………………… 20 4-1 成長時間對合成奈米碳管的影響…………………………… 20 4-2 鎳膜厚度對合成奈米碳管的影響…………………………… 23 4-3 預處理時間對合成奈米碳管的影響………………………… 27 4-4 MW功率條件對合成奈米碳管的影響………………………… 28 4-5 氮氣於低溫合成奈米碳管的影響…………………………… 32 4-6 極低溫(260℃)合成奈米碳管………………………………36 4-6-1 極低溫合成奈米碳管參數之設定方向………………………… 37 4-6-1.1 觸媒厚度設計方向………………………………………37 4-6-1.2 預處理時間設計方向……………………………………38 4-6-1.3 MW功率設計方向…………………………………………38 4-6-1.4 碳源流量設計方向………………………………………38 4-6-1.5 氮氣流量設計方向………………………………………39 4-6-2 極低溫(260℃)合成奈米碳管之探討……………………39 4-6-3 微區拉曼光譜分析………………………………………… 42 4-6-4 場發射特性之量測………………………………………… 45 第五章 合成奈米碳管之結論…………………………………… 47 第六章 粗糙面之衝擊冷卻熱傳研究…………………………… 50 6-1.1 前言………………………………………………………… 50 6-1.2 粗糙面製程設備…………………………………………… 50 6-2 粗糙面製程步驟…………………………………………… 52 6-3 實驗設備與量測方法……………………………………… 54 6-3.1 小型風洞………………………………………………55 6-3.2 微移動機構……………………………………………55 6-3.3 氣源供應與控制系統…………………………………56 6-3.4 微噴嘴…………………………………………………56 6-3.5 微熱晶片………………………………………………57 第七章 附粗糙面衝擊冷卻之實驗結果與討論………………… 58 7-1 局部熱傳效應……………………………………………… 58 7-2 停滯點之熱傳效應………………………………………… 60 7-3 Nusselt number值之統計複回歸分析…………………… 62 第八章 粗糙面之衝擊冷卻結論………………………………… 64 參考文獻………………………………………………………………66

    【1】G. Z. Yue, Q. Qiu, Bo Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, App. Phys. Lett. 81 355-357 (2002)

    【2】S. Iijima, Nature 354, 56-58(1991)

    【3】R. E. Smalley, B. I. Yakobson, ‘The Future of the fullerenes’, Solid State Communication 107 (1998) 597-606

    【4】J. Jiao, P. E. Nolan, D. Deraphin, A. H. Cutler, D. C. Lynch, Journal of the Electrochemical Society 143 (1996) 932

    【5】Y. Chen, L. P. Guo, D. J. Johnson, R. H. Prince, Journal of Crystal Growth 193 (1998) 342-346

    【6】R. Satio, M. Fujita, G. Dresselhaus, M. S. Dressehaus, Applied. Phys. Lett. 60, 2204-2206(1992)

    【7】 M. S. Dresselhaus, G. Dresselhauszy, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego 1996)

    【8】L. X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177-180 (1996)

    【9】W. Yi, L. Lu, Zhang Dian-Lin, Z. W. Pan, S. S. Xie, Phys. Rev. B 59, R9015 (1999)

    【10】 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 483-487 (1996)

    【11】M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996)

    【12】J. P. Salvetat, G.. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. BurNHAM, L. Forro, Phys. Rev. Lett. 82, 944 (1999)

    【13】T. W. Ebbesen, P. M. Ajayan, Nature 358, 220-222 (1992)

    【14】S. Iijima, T. Ichihashi and Y. Ando, Nature (London) 356 (1992) 776

    【15】 D. S. Bethune, C. H. Kiang, M. DeVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605-607 (1993)

    【16】 A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 483-487 (1996)

    【17】J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Paul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 280, 1253-1256 (1998)

    【18】Hongjie Dai, Carbon Nanotube (Synthesis Structure Properties and Applications), 32-35(2001)

    【19】J. Kong, A. M. Cassell, H. Dai, Chem. Phys. Lett. 292, 567-574 (1998)

    【20】J. Kong, H. Soh, A. Cassell, C. F. Quate, H. Dai, Nature 395, 878-879 (1998)

    【21】徐逸明,‘化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究’,國立成功大學化學工程研究所 P 92-93 (2001)

    【22】M. S. Dresselhaus, G. Dresshelaus, R. Satio, Carbon 33, 883-891 (1995)

    【23】M. S. Dresselhaus, G. Dresshelaus, R. Satio, Phys. Rev. B 45, 6234 (1992)

    【24】J. Hone, M. Whitney, C. Piskoit, A. Zettl, Phys. Rev. B59, R2514 (1999)

    【25】P. Chen, X. Wu, J. Lin, K. Tan, Science 285, 91 (1991)

    【26】C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, Science 286, 1127 (1999)

    【27】C. Nutenadel, A. Zuttle, D. Chartouni, L. Schlapbach, Solid-State Lett. 2, 30 (1999)

    【28】M. S. Dresselhaus, K. A. Williams, P. C. Eklund, MRS Bull. 24 (11), 45 (1999)

    【29】Ashish Modi, Nikhil Koratkar, Eric Lass, Bingqing Wei, and Pulikel M.
    Ajayan, Nature 424(2003), 171-174

    【30】M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Miline, J. Appl. Phys. 90 (2001), 5308

    【31】P. Burden, and S. R. P. Silva, ‘Fullerene and nanotube formation in cool terrestrial ‘dusty plasmas’’, Appl. Phys. Lett., 73 (1998) 3082

    【32】H. Cui, O. Zhou, B.R. Stoner, Journal of Applied Physics 88(2000) p.6072

    【33】C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin, Applied Physics Letters 77(2000) p.2767

    【34】Y. Chen, Z.L. Wang, J.S Yin, D.J. Jonhnson, R.H. Prince, Chemical Physics Letters 272(1997) p.178-182

    【35】Y. Li, J.Chen, Y. Zhao, Y. Qin, L. Chang, Chemical
    Communications (1999) p.1141-1142

    【36】J. Shiao, R.W. Hoffman, Thin Solid Films 283 (1996), 145 -150

    【37】J. H. Kaufman, S. Metin, D. D. Saperstein, Physical Review B 39 (1989), 13053

    【38】C. A. Cooper, R. J. Young, and M. Halsall. Composites:Part A 32 (2001),401

    【39】Yih-Ming Shyu, Franklin Chau-Nan Hong, ‘Materials Chemistry and Physics’ 72(2001)223-227

    【40】Chich-Hwa Shen, “Thermal Chip Fabrication with arrays of Sensors and Heaters with Analysis and Measurement of Micro Scale Impingement Cooling Flow and Heat Transfer,” Ph. D. thesis, National Cheng Kung University, Taiwan, Republic of China, 2003.

    【41】R. Gardon and J. C. Akfirat, “Heat transfer characteristics of Impinging two dimension air jets”, ASEM J. Heat Transfer. Vol. 88, pp. 101-108, 1966.

    【42】Chin-Jian Chan, 'Fabrication of a Rib-Roughened Thermal Chip by MEMS Techniques and Measurement of Free Micro Jet Flow and Impingement Cooling Heat Transfer'

    下載圖示 校內:2005-08-10公開
    校外:2005-08-10公開
    QR CODE