簡易檢索 / 詳目顯示

研究生: 柏望關
Purwaningrum, Indah Ayu
論文名稱: 射頻磁控濺鍍製備摻雜鈮之二氧化鈦薄膜及其特性之研究
Study of the Properties of TiO2: Nb Thin Films Synthesized by RF Magnetron Sputtering
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 71
中文關鍵詞: 二氧化鈦薄膜射頻磁控濺射氧空缺退火穿透率
外文關鍵詞: TiO2:Nb, RF magnetron sputtering, oxygen vacancy, annealing, transmittance
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻磁控濺鍍法在玻璃基板上沉積二氧化鈦摻雜鈮(TiO2: Nb)薄膜,並藉由調變氧分壓、沉積時間與退火溫度來探討所製備TiO2: Nb薄膜之晶體結構、光學特性及表面粗糙度。實驗結果顯示,所製備之TiO2: Nb薄膜在可見光範圍內,其穿透度為70~90% 。從氧元素之XPS能譜分析得知,氧空缺確實存在於TiO2: Nb薄膜,並影響TiO2: Nb薄膜的穿透性與能隙變化。
    此外,為了提升TiO2: Nb薄膜特性,進行不同溫度與氣氛之退火處理。發現在300 oC真空環境下,進行退火處理一小時,此薄膜具有較高可見光範圍穿透率(70~90%)又兼具低紅外光穿透率(約20~40%)特性,適合應用於減少紅外光通過之薄膜材料。

    TiO2:Nb thin films were deposited on glass substrates using the RF magnetron sputtering method. The O2 partial pressures, deposition time, annealing temperature were adjusted to study their effects on TiO2:Nb thin film. The crystal structure, optical properties, and surface roughness of TiO2:Nb thin films are investigated using X-ray diffraction, X-ray photoelectron spectra, and transmittance spectra. The difference in band gap energy of TiO2: Nb thin films with different O2 partial pressure is caused by the oxygen vacancy inside the TiO2:Nb thin films. This statement is proven by the XPS spectra which shows the shift of O(1s) peaks in TiO2:Nb thin films with various O2 partial pressure. A high transmittance TiO2:Nb thin films in visible region were prepared with post annealing treatment under various temperature and atmosphere for 1 hour. The properties of TiO2:Nb thin films as well as the surface microstructure starts changing after TiO2:Nb thin films annealed under vacuum and N2, respectively. The transmittance of TiO2:Nb thin films obtained 70%~90% in the visible light range. TiO2:Nb thin films annealed in vacuum at 3000C with films annealed in N2 have higher value of Root mean square (RMS) roughness obtained by SPM measurement which are RMS= 7.47nm and RMS= 6.42nm , respectively. TiO2:Nb thin films annealed in vacuum and N2 atmosphere can cut IR light with 1250nm and above with the lowest transmittance is in the range of 20%-40% transmittance in IR region. For TiO2:Nb thin films deposited with different %wt Nb, all TiO2:Nb thin films have same spectra after annealed in vacuum at various temperature except for TiO2:Nb thin films with 5%wt Nb doping annealed at 6000C. This film can cut IR light in the range of 40%-60% transmittance in IR region.

    Acknowledgements 2 中文摘要 ii Extended Abstract iii Table of Content ix List of Figures xii List of Tables xv Chapter 1 Introduction 1 1.1 Introduction to TiO2:Nb thin films as IR reflective films 1 1.2 Aims of the research 2 1.3 The investigation of the properties of TiO2:Nb thin films with different thickness and O2 partial pressure 2 1.4 The investigation of the properties of TiO2:Nb thin films with different %wt Nb doping 3 1.5 The investigation of the properties of TiO2:Nb thin films with different annealing temperature and atmosphere 3 1.6 Thesis Organization 3 Chapter 2 Fundamental Theorems 4 2.1 Thin films 4 2.2 Influenced parameters of film quality 4 2.3 Sputter Yield 5 2.4 Control of film structure 5 2.5 Transparent Conducting Oxide thin films (TCO) 6 2.6 Relation of resistivity, mobility, and carrier concentration 6 2.7 TiO2 thin films 6 2.8 TiO2: Nb thin films 7 2.9 Reflection mechanism of infrared radiations 7 2.9.1 Light Reflection 7 2.9.2 Factors affecting infrared reflectivity 8 2.10 Applications of IR reflective layers 11 2.11 Optical band gap 12 2.12 Grain size determination 13 2.13 Plasma Wavelength 13 Chapter 3 Experimental method and process 15 3.1 The system of fabrication and measurement 15 3.1.1 Radio Frequency Magnetron Sputter 15 3.1.2 Annealing System 15 3.1.3 Ultrasonic Cleaner 16 3.1.4 UV-VIS/NIR Spectrophotometer 16 3.1.5 Grazing Incident XRD (GIXRD) 16 3.1.6 Alpha Step Profiling 17 3.1.7 Scanning Electron Microscope (SEM) 17 3.1.8 Hall Effect Measurement 17 3.1.9 Scanning Probe Microscope (SPM) 18 3.2 Flow Diagram 19 3.3 Experiment Detail 20 3.3.1 The investigation and comparison of the properties of TiO2:Nb thin films with different thickness and O2 partial pressure 20 3.3.2 The investigation and comparison of the properties of TiO2:Nb thin films with different %wt Nb doping 20 3.3.3 The investigation and comparison of the properties of TiO2:Nb thin films with different annealing temperature and conditions 21 Chapter 4 Result and Discussions 22 4.1 Deposition trial 22 4.2 The investigation and comparison of the properties of TiO2:Nb thin films with different thickness and O2 partial pressure 28 4.3 The investigation and comparison of the properties of TiO2:Nb thin films with different %wt Nb doping 40 4.4 The investigation and comparison of the properties of TiO2:Nb thin films with different annealing temperature and atmospheres 44 Chapter 5 Conclusions 64 5.1 The investigation and comparison of the properties of TiO2:Nb thin films with different thickness and O2 partial pressure 64 5.2 The investigation and comparison of the properties of TiO2:Nb thin films with different %wt Nb doping 64 5.3 The investigation and comparison of the properties of TiO2:Nb thin films with different annealing temperature and atmospheres 65 Reference 67

    [1] N. Arfsten, "Sol-gel derived transparent IR-reflecting ITO semiconductor coatings and future applications," Journal of Non-Crystalline Solids, 63, 243-249 (1984).
    [2] W.-F. Wu and B.-S. Chiou, "Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering," Thin Solid Films, 298, 221-227 (1997).
    [3] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, "A transparent metal: Nb-doped anatase TiO2," Applied Physics Letters, 86, 252101( 2005).
    [4] Y. Sato, H. Akizuki, T. Kamiyama, and Y. Shigesato, "Transparent conductive Nb-doped TiO2 films deposited by direct-current magnetron sputtering using a TiO2−x target," Thin Solid Films, 516, 5758-5762 (2008).
    [5] N. Oka, Y. Sanno, J. Jia, S.-i. Nakamura, and Y. Shigesato, "Transparent conductive Nb-doped TiO2 films deposited by reactive dc sputtering using Ti–Nb alloy target, precisely controlled in the transition region using impedance feedback system," Applied Surface Science, 301, 551-556 (2014).
    [6] Q. Wan and T. H. Wang, "Comment on “A transparent metal: Nb-doped anatase TiO2 [Appl. Phys. Lett. 86, 252101 (2005)]," Applied Physics Letters, 88, 26102 (2006).
    [7] G. Yang, Z. Jiang, H. Shi, T. Xiao, and Z. Yan, "Preparation of highly visible-light active N-doped TiO2 photocatalyst," Journal of Materials Chemistry, 20, 5301(2010).
    [8] R. Asahi, Y. Taga, W. Mannstadt, and A. Freeman, "Electronic and optical properties of anatase TiO 2," Physical Review B, 61, 7459 (2000).
    [9] M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, and M. Abd-Lefdil, "Comparative study of ITO and FTO thin films grown by spray pyrolysis," Materials Research Bulletin, 44, 1458-1461 (2009).
    [10] V. Khranovskyy and R. Yakimova, "Morphology engineering of ZnO nanostructures," Physica B: Condensed Matter, 407, 1533-1537 (2012).
    [11] E. Ollotu, M. Samiji, and R. Kivaisi, "Influence of Films Thickness on Optical Properties of Nb-Doped TiO2 (NTO) Thin Films Deposited by DC Reactive Magnetron Sputtering." International Journal of Nano Science and Technology, 2, 1-10 (2014)
    [12] G. Frank, E. Kauer, and H. Köstlin, "Transparent heat-reflecting coatings based on highly doped semiconductors," Thin Solid Films, 77, 107-118 (1981).
    [13] E. Wäckelgård, A. Mattsson, R. Bartali, R. Gerosa, G. Gottardi, F. Gustavsson, "Development of W–SiO2 and Nb–TiO2 solar absorber coatings for combined heat and power systems at intermediate operation temperatures," Solar Energy Materials and Solar Cells, 133, 180-193 (2015).
    [14] T. Abe, T. Ohsawa, M. Katayama, H. Koinuma, and Y. Matsumoto, "Anomalous thickness and dopant effects on photochemical deposition of Ag on epitaxial TiO2 (110)∕Nb:TiO2 (110) heterostructures," Applied Physics Letters, 91, 061928 (2007).
    [15] M. Chandra Sekhar, P. Kondaiah, B. Radha Krishna, and S. Uthanna, "Effect of Oxygen Partial Pressure on the Electrical and Optical Properties of DC Magnetron Sputtered Amorphous Films," Journal of Spectroscopy, 2013, 7 (2012).
    [16] T. Zhu and S.-P. Gao, "The stability, electronic structure, and optical property of TiO2 polymorphs," The Journal of Physical Chemistry C, 118, 11385-11396 (2014).
    [17] D. Mardare and E. Apostol, "TiO2 thin films doped by Ce, Nb, Fe, deposited onto ITO/glass substrates," Journal of optoelectronics and advanced materials, 8, 914 (2006).
    [18] A. A. Haidry, P. Durina, M. Tomasek, J. Gregus, P. Schlosser, M. Mikula, "Effect of post-deposition annealing treatment on the structural, optical and gas sensing properties of TiO2 thin films," in Key Engineering Materials, 2012, 467-474.
    [19] J.-H. Park, Y.-Y. Choi, H.-K. Kim, H. H. Lee, and S.-I. Na, "The effects of rapid thermal annealing on the electrical, optical, and structural properties of Nb:TiO2 multilayer electrodes with an inserted nanoscale Ag layer for organic solar cells," Journal of Applied Physics, 108, 083509 (2010).
    [20] H. Adachi and K. Wasa, "Thin Films and Nanomaterials," 3-39 (2012).
    [21] K. Wasa, "Sputtering Phenomena," 41-75 (2012).
    [22] J. G. Bednorz and K. A. Müller, "Possible highT c superconductivity in the Ba− La− Cu− O system," Zeitschrift für Physik B Condensed Matter, 64, 189-193 (1986).
    [23] K. Wasa, "THIN FILM TECHNOLOGY AS A MATERIALS ENGINEERING," Revista Brasileira de Aplicações de Vàcuo, 20, 1-18 (2008).
    [24] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor Science and Technology, 20, S35-S44 (2005).
    [25] C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot, and A. N. Tiwari, "Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers," Progress in Photovoltaics: Research and Applications, 18, 434-452 (2010).
    [26] K. Hazu, A. Fouda, T. Nakayama, A. Tanaka, and S. F. Chichibu, "Crystal Phase-Selective Epitaxy of Rutile and Anatase Nb-Doped TiO2Films on a GaN Template by the Helicon-Wave-Excited-Plasma Sputtering Epitaxy Method," Applied Physics Express, 3, 091102 (2010).
    [27] M. S. Dabney, M. F. A. M. van Hest, C. W. Teplin, S. P. Arenkiel, J. D. Perkins, and D. S. Ginley, "Pulsed laser deposited Nb doped TiO2 as a transparent conducting oxide," Thin Solid Films, 516, 4133-4138 (2008).
    [28] Y. Furubayashi, N. Yamada, Y. Hirose, Y. Yamamoto, M. Otani, T. Hitosugi, "Transport properties of d-electron-based transparent conducting oxide: Anatase Ti1-xNbxO2," Journal of Applied Physics,101, 093705 (2007).
    [29] D. Kurita, S. Ohta, K. Sugiura, H. Ohta, and K. Koumoto, "Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures," Journal of Applied Physics, 100, 096105 (2006).
    [30] S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, "Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase," Journal of Applied Physics, 102, 013701 (2007).
    [31] K. S. Takahashi and H. Y. Hwang, "Carrier doping in anatase TiO2 film by perovskite overlayer deposition," Applied Physics Letters, 93, 082112 (2008).
    [32] C. Li, Y. F. Zhao, Y. Y. Gong, T. Wang, and C. Q. Sun, "Band gap engineering of early transition-metal-doped anatase TiO2: first principles calculations," Phys Chem Chem Phys, 16, 21446-51 (2014).
    [33] A. Janotti, C. Franchini, J. Varley, G. Kresse, and C. Van de Walle, "Dual behavior of excess electrons in rutile TiO2," Physica status solidi (RRL)-Rapid Research Letters, 7, 199-203 (2013).
    [34] J. F. Fang.V.; Kenedy, J.: Manning, J. , "A review of near infrared reflectance properties of metal oxide nanostructures," GNS Science Report, 39, 23 (2013).
    [35] O. G. Abdullah, D. R. Saber, and L. O. Hamasalih, "Complexion Formation in PVA/PEO/CuCl2 Solid Polymer Electrolyte," Universal Journal of Material Science 3, 1, 1-5 (2015).
    [36] N. Ghobadi, "Band gap determination using absorption spectrum fitting procedure," International Nano Letters, 3, 1-4 (2013).
    [37] T. Hitosugi, H. Kamisaka, K. Yamashita, H. Nogawa, Y. Furubayashi, S. Nakao, "Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2," Applied Physics Express, 1, 111203 (2008).
    [38] P. Kale, A. C. Gangal, R. Edla, and P. Sharma, "Investigation of hydrogen storage behavior of silicon nanoparticles," International Journal of Hydrogen Energy, 37, 3741-3747 (2012).
    [39] A. K. Hadi, M. H. Jaduaa, and A.-H. K. Elttayef, "Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering."
    [40] V. V. S. Murty and V. Dashore, "Structural and optical properties of silver doped TiO2thin films for solar cell applications," Journal of Physics: Conference Series, 534, 012030 (2014).
    [41] C.-H. Wei and C.-M. Chang, "Polycrystalline TiO2 Thin Films with Different Thicknesses Deposited on Unheated Substrates Using RF Magnetron Sputtering," Materials Transactions, 52, 554-559 (2011).
    [42] X. D. Liu, E. Y. Jiang, Z. Q. Li, and Q. G. Song, "Electronic structure and optical properties of Nb-doped anatase TiO2," Applied Physics Letters, 92, 252104 (2008.
    [43] L. Chiodo, J. M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, "Self-energy and excitonic effects in the electronic and optical properties ofTiO2crystalline phases," Physical Review B, 82 (2010).
    [44] T. Gu, "Role of oxygen vacancies in TiO2-based resistive switches," Journal of Applied Physics,113, 033707 (2013).
    [45] X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, "Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications," Nanoscale, 5, 3601-14 (2013).
    [46] A. A. Haidry, J. Puskelova, T. Plecenik, P. Durina, J. Gregus, M. Truchly, "Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method," Applied Surface Science, 259, 270-275 (2012).
    [47] C. Bright, "Transparent conductive thin films," 741-788 (2013).

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE