簡易檢索 / 詳目顯示

研究生: 蘇繼憲
Su, Chi-Hsien
論文名稱: 探討空心球狀中孔洞氧化矽生成機構和高表面積中孔洞碳材於超級電容之應用
A Study on the Mechanism of the Mesoporous Silica Hollow Spheres and the Application of the High-Surface-Area Mesoporous Carbons in Supercapacitor
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 空心球狀氧化矽中孔洞碳材超級電容
外文關鍵詞: hollow spheres, silica, mesoporous carbons, supercapacitor
相關次數: 點閱:116下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為三個研究主題:第一個部分是探討氧化矽球經由實心球狀轉變成空心球狀的機制及相關應用。第二個部分是利用簡易快速的鹼式合成法,合成高表面積中孔洞碳材和測試其電化學行為。第三個部分是以廢棄的稻殼利用簡單的處理方法,從其中取出高表面積的孔洞氧化矽材料及應用。
    第一部分:以明膠為模板合成中空球狀氧化矽材料及應用
    本實驗利用毒性低且對環境汙染程度低的有機模板-明膠,利用其具有胺基等可擁有氫鍵結合的官能基,在適當條件下加入矽酸鈉合成有機無機混合材料,在不同pH值下觀察水熱天數和溫度對此材料性質的影響,進而探討由實心球狀轉變成中空球狀的機制。因中孔洞氧化矽材料具有高表面積、熱穩定性高及孔洞大小可調整等優點,可應用再催化反應及固態模板等方面。另外在醫學上可將此材料吸附藥物,利用此材料受電子束激發放光的特性,可應用於藥物追蹤。
    第二部分:以鹼式合成法合成中孔洞碳材及其電化學應用
    本實驗利用酚醛樹脂可以溶在鹼性環境下,與有機模板混摻後,在適當條件下加入矽酸鈉合成有機無機混合材料,經由碳化、移除氧化矽,即可得到高表面積中孔洞碳材。中孔洞碳材具有高表面積與大的孔洞體積等優點,可應用在吸附劑、固態模板、催化擔體及電極材料等。在這裡主要利用中孔洞碳材作為超級電容器的電極材料,利用循環伏安法測試其電容行為。
    第三部分:廢棄稻殼再利用技術
    稻殼屬於亞洲地區大宗農業廢棄物,除了少部份用以堆肥外,大部份皆置於田野間焚燒,造成污染。因此,基於環境保護方面及廢棄物回收再利用兩大方向,善用稻殼中的有機或無機化合物做為高價值的工業原料,為具有發展潛力的研究領域。因此在本實驗中將稻殼放入酸性的水溶液中,利用簡單的常壓水熱法取出高表面積的氧化矽,並擔載不同比例氧化銅進行應用。

    This thesis is mainly divided into three research topics. The first part is to explore the formation mechanism and applications of the mesoporous silica hollow particles templated with a biopolymer gelatin. The second part is focused on the investigation of the electrochemical behavior of the mesoporous carbons synthesized via a simple basic synthesis method, which have larger surface areas but different pore sizes. In third part, the treatment methods on the rice husks to get mesoporous silicas with larger surface areas and the applications of these mesoporous silicas in PH3 adsorption were studied.
    Part I. Synthesis of mesoporous silica hollow particles by using gelatin as template and its applications
    The as-synthesized gelatin-silica hybrid materials prepared by using sodium silicate as silica source and a low toxic and environment-friendly of organic template, gelatin, were hydrothermally treated under different conditions to explore the formation mechanism of the mesoporous silica hollow spheres. At pH values = 5.0 – 9.0, the gelatin-silica solid particles would gradually transform into hollow ones because of the repulsion interactions between the negatively-charged silica surface and partially negatively-charged gelatin. While at pH less than 5.0, the hydrogen-bonding interactions still exist between the silica and gelatin to reduce the morphology transformation. In addition, hydrothermal temperatures, and reaction time can also have effect on the solid to hollow transformation rate. Owing to the lager surface area and pores size, higher thermal stability, and hollow interiors, these mesoporous silica hollow spheres not only can be used as catalyst supporters and as solid template application but also can applied in drug-release systems for tracer agents in the medical science based on their light-emitting characteristics.
    Part II. Electrochemical application of mesoporous carbons via a basic synthetic procedure
    To synthesize the mesoporous carbons of high surface area and tunable pore size, we proposed a novel polymer-blending template of carbonizable phenol formaldehyde and gelatin. The mesoporous carbons can be conveniently obtained from fast silicification, hydrothermal treatment, pyrolysis and silica removal of a basic PF-gelatin silicate solution. Due to the large pore size (> 10 nm), high surface area, good electronic conductivity, 3D highly open structure, the mesoporous carbons demonstrates the rectangular-like shape of all i-E curves measured from 100 to 3000 mV s1 in 4 M H2SO4 that reveals the excellent capacitive performances. The mesoporous carbons electrode exhibits only about 30% loss when the scan rate is varied from 100 to 3000 mV s1 In contrast to the mesoporous silica of smaller pore size (< 5.0 nm), the capacitance retention is less than 40% at scanning rate of 3000 mVs-1. These perfect capacitive performances confirm the promising applicability of these novel mesoporous carbons for supercapacitors of ultrahigh power.
    Part III. Reuse technology of the abundant the rice husk
    The rice husk belongs to a great agriculture wastes in the Asian. Besides the few parts used as the fertilizer, most parts were directly burned that causes an air-pollution issue. Therefore, this is a potential research field by using organic-silica hybrid composites of the rice husk as a high value raw material for industry based on the environmental protection aspect and the waste reuse. In our work, mesoporous silicas with high large surface areas and pore size were obtained from a treatment on rice husks in acid aqueous solution at room temperature and 100oC. Moreover, the mesoporous silicas grafted with different copper oxide contents can be used as a high-performance absorbent of PH3 toxic gas.

    第一章 序論 1 1.1 中孔洞材料介紹 ……………………………………………………………1 1.1.1中孔洞材料的主要研究範疇 ……………………………… ………2 1.1.2中孔洞碳材(mesoporous carbon)簡介 ……………………………3 1.1.2.1 高分子混摻方式合成中孔洞碳材………………………3 1.2界面活性劑簡介 …………………………………………………… ………4 1.2.1界面活性劑分類 …………………………………… ………………4 1.2.1.1明膠(Gelatin) ……………………………………………5 1.2.2微胞的形成 ……………………………………………… …………6 1.2.3界面活性劑聚集體的結構 ………………………… ………………7 1.2.4陽性-陰性離子型界面活性劑所組成的系統……………… ………8 1.3矽酸鹽的基本概念 ………………………………………… ………………9 1.4電化學原理介紹………………………………………… …………………11 1.4.1電化學反應槽…………………………………… …………………12 1.4.2過電位…………………………………… …………………………13 1.4.3電容器簡介………………………………… ………………………14 1.4.4電雙層的結構與概念…………………………… …………………16 1.4.4.1電雙層原理……………………… ………………………16 1.4.4.2電雙層結構……………………………… ………………16 1.5超級電容器……………………………………………… …………………19 1.5.1電雙層電容器(Electric Double-Layer Capacitors,EDLC) ……20 1.5.2準電容器(Pseudo-capacitors) ……………………… ………… 23 1.6稻殼再利用…………………………………………………………………24 第二章 實驗部份 26 2.1化學品……………………………………………………………… ………26 2.2 儀器鑑定分析………………………………………………………………27 2.2.1 熱重分析儀(Thermogravimetry Analysis; TGA) ………………27 2.2.2 掃描式電子顯微鏡(Scanning Electron Microscopy;SEM) … …27 2.2.3氮氣等溫吸附/脫附測量(N2 adsorption/desorption isotherm)27 2.2.4穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 30 2.2.5 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;PXRD)……31 2.2.6 電化學分析儀………………………………………………………31 2.2.7 X光能譜散佈分析儀(Energy Dispersive Spectrometer;EDS)…33 2.2.8 Cathodoluminescence spectroscope (陰極激發光光譜) ………34 第三章 合成中空球狀中孔洞氧化矽 35 3.1 研究動機及目的……………………………………………………………35 3.2 實驗步驟……………………………………………………………………36 3.3合成中空氧化矽球…………………………………… ……………………38 3.3.1 不同pH值對Gelatin-氧化矽球組成之影響 ……………………38 3.3.2 水熱時間對溶解再結晶速率的影響………………………………45 3.3.3 觀察在水熱溫度不同下對反應速率的影響………………………47 3.3.4 探討反應機制………………………………………………………49 3.4 空心中孔洞氧化矽材料之應用……………………………………………51 3.5 結論…………………………………………………………………………52 第四章 鹼式合成中孔洞碳材及其電容行為 53 4.1研究動機與目………………………………………………………………53 4.2實驗步驟……………………………………………………………………54 4.3以明膠混摻酚醛樹脂PF2180於鹼性環境下合成中孔洞碳材 …………56 4.3.1 改變pH值對反應系統的影響……………………………………56 4.3.2 改變酚醛樹脂(PF2180)的量對反應系統的影響 ………………59 4.3.3 水熱反應對中孔洞碳材性質及電容行為的影響 ………………63 4.3.4 高溫精煉對明膠混摻酚醛樹脂PF2180於鹼性環境下所合成之中 孔洞碳材性質的影響 ……………………………………………66 4.4 以F127和酚醛樹脂PR620於鹼式環境下合成中孔洞碳材……………68 4.5 結論 ………………………………………………………………………72 第五章 廢棄稻殼回收與其應用 73 5.1研究動機與目的… …………………………………………………………73 5.2 實驗步驟……………………………………………………………………74 5.3以稻殼為原料所製作之中孔洞氧化矽………………………………… …74 5.3.1稻殼經酸洗和水熱的影響 …………………………………… …74 5.3.2改變酸來源對反應系統的影響 ……………………………… …77 5.3.3改變水熱pH值對反應系統的影響 ………………………………80 5.3.4改變水量對反應系統的影響 ……………………………… ……82 5.3.5改變水熱時間對反應系統的影響 ……………………… ………84 5.3.6改變水熱溫度對反應系統的影響 ………………………… ……85 5.4氧化銅與二氧化矽的複合材料 …………………………………… ……86 5.4.1實驗步驟 ……………………………… …………………………86 5.4.2 CuO/氧化矽 中孔洞材料製程討論與應用… ……………………87 5.5結論 ………………… ……………………………………………………91 第六章 總結論……………………………………………………………………92 參考資料 ………………………………………………………………………… 94

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C.
    Vartuli, J. S. Beck, Nature, 1992, 359, 710.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    3. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and
    Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
    4. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao.
    Angew. Chem. 2003, 115 , 3254.
    5. A. Vinu, V. Murugesan, M. Hartmann. Chem. Mater. 2003, 15, 1385.
    6. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
    7. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
    8. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    9. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon.
    Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
    10. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
    11. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou
    Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
    12. A. Walcarius, M. Etienne, B. Lebeau. Chem. Mater. 2003, 15, 2161.
    13. T. Yokoi, H. Yoshitake, T. Tatsumi. J. Mater. Chem. 2004, 14 , 951.
    14. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature., 2000, 48, 289.
    15. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
    16. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed.
    2003, 42, 413.
    17. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
    18. Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater. 2000, 12, 206.
    19. P. Jiang, J. F. Bertone, V. L. Colvin, Science. 2001, 291, 453.
    20. C. E. Fowler, D. Khushalani, S. Mann, Chem. Commun. 2001, 2028.
    21. Q. S. Huo, Q. J. L. Feng, F. Schu¨th, G. D. Stucky, Chem. Mater. 1997, 9, 14.
    22. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker, C. J. Brinker, Nature.
    1999, 398, 223.
    23. C. E. Fowler, D. Khushalani, B. Lebeau, S. Mann, Adv. Mater. 2001, 13, 649.
    24. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New
    York 1988.
    25. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    26. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun.1998,
    2177.
    27. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N.Toyota,
    Synthetic Metals, 2003, 721.
    28. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater.,2003, 15,
    2107
    29. T. Kyotani, Carbon. 2000, 38, 269.
    30. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem.Mater.,1996, 8,
    454.
    31. W. Lu, D. D. L. Chung, Carbon. 1997, 35, 427.
    32. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
    33. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
    34. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146,3639.
    35. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater.,
    2000, 12, 3397.
    36. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,No. 9, 677.
    37. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O.
    Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
    38. R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki,
    manuscript in preparation.
    39. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
    40. S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
    41. N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
    42. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew.
    Chem. Int. Ed. 2002, 41, 1543
    43. T. F. Todros, Surfactants, Academic Press : London, 1984.
    44. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in
    Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    45. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    46. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77,
    1264.
    47. C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E.
    Spigone, J. Phys. Chem. B, 2007, 111, 898
    48. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    49. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids ,1985, 70,
    301.
    50. A. J. Bard, L. R. Faulkner, Electrochemical Method, John Wiley & Sons. Inc.
    2001
    51. E. A Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J.
    Electrochemical. Soc. 1998, 135, 2209.


    52. A. J. Appleby, and F. R. Folkes, Fuel Cell Handbook, Van Nostrand Reinhold,
    New York 1989.
    53. Z. Ogumi, T. Kuroe and Z. I. Takehara, J. Electrochem. Soc. 1985, 132, 2601.
    54. H. D. Young, Physics, Addison-Wesley Publishing Co.: New York, (1992).
    55. J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and
    Adsorption from Solution, Wiley-Vch : New York, (1998).
    56. 胡啟章編著, “電化學原理與方法”, 五南圖書, (2002).
    57. C. H. Hamann, A. Hammnett, and W. Vielstich, Electrochemistry, Wiley-Vch:
    New York, (1998).
    58. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and
    Applications”, John Wiley & Sons, Singapore, (1980).
    59. M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
    60. J. G. D. Haenen, W. Visscher and E. Barendrecht, Journal Applied Electrochem.
    1985, 15, 29-38.
    61. A. Burke, J. Power Source 2000, 91, 37.
    62. A. B. Fuertes, F. Pico, J. M. Rojo, J. Power Source 2004, 133, 329.
    63. D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008,
    47, 373.
    64. J. P. Zheng, T. R. Jow, J. Electrochem. Soc. 1995, 142, L6.
    65. V. Khomenko, E. Frackowiak, F. Béguin, Electochim. Acta 2005, 50, 2499.
    66. E. Frackowiak, Phys. Chem. Chyem. Phys. 2007, 9, 1774.
    67. X.W. Lou, L. A. Archer, Z. Yang. Adv. Mater.2008, 20, 3987
    L.M. Xiong, E. H. Sekiya, S. Wada,. ACS Appl. Mater. Interfaces. 2009, 1, 2509.

    下載圖示 校內:2013-07-02公開
    校外:2015-07-02公開
    QR CODE