簡易檢索 / 詳目顯示

研究生: 陳宣穆
Chen, Syuan-Mu
論文名稱: Lagrange和Hermite微分再生核適點法之發展與應用
Development of Lagrange and Hermite Differential Reproducing Kernel Methods and Their Application
指導教授: 吳致平
Wu, Chih-Ping
王永明
Wang, Yung-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 拉格朗日微分再生核內插適點法赫麥特微分再生核內插適點法Kronecker Delta平板
外文關鍵詞: Lagrange DRK interpolation method, Hermite DRK interpolation method, Kronecker Delta, beam, plate
相關次數: 點閱:86下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文首先發展拉格朗日微分再生核內插適點法,每個節點的形狀函數被分離成初始函數和修正函數,使用一組再生條件決定每個節點處之初始函數與一個簡單的歸一化核函數涵蓋了所有的鄰近點,並將之指定為形狀函數,採用每個節點影響半徑內不包含任何鄰近點之四次平滑函數作為修正函數且滿足Kronecker Delta性質。隨後,每個節點的微分再生核內插函數之形狀函數導數由使用一組微分再生條件導出的初始函數和修正函數之導數所決定。接下來發展赫麥特微分再生核內插適點法,梁與平板控制方程式為四階微分方程,並且在幾何邊界條件中與橫向撓度 與其對空間座標一次導數得到之斜率有關,此法將撓度與轉角同時視為主變數且赫麥特函數滿足Kronecker Delta性質以方便施加幾何邊界條件,上述方法均與文獻理論解作比較,以驗證其準確性和探討收斂速率。

    The present paper first develops the Lagrange differential reproducing kernel (DRK) interpolation-based collocation method the differential reproducing kernel interpolation method. The novelty of this method is that we construct a set of differential reproducing conditions to determine the shape functions of derivatives of the DRK interpolation function, without directly differentiating the DRK interpolation function. In addition, the shape function of the DRK interpolation function at each collocation node is separated into a primitive function constituting reproducing conditions and an enrichment function processing Kronecker delta properties, so that the nodal interpolation properties are satisfied. The Hermite DRK interpolation method is developed later for solving fourth-order differential equations where the field variable and its first-order derivatives are regarded as the primary variables that the nodal interpolation properties are satisfied for the field variable and its first-order derivatives. These methods are compared with the literature theory solution to verify its accuracy and to discuss the convergence rate.

    第一章 緒論 1 1.1 研究動機與文獻回顧 1 1.2 本文內容 5 第二章 數值方法 7 2.1 拉格朗日微分再生核近似法 7 2.1.1 拉格朗日微分再生核近似函數 7 2.1.2 拉格朗日微分再生核近似函數之導數 8 2.2 拉格朗日微分再生核內插法 10 2.2.1 拉格朗日微分再生核內插函數 11 2.2.2 拉格朗日微分再生核內插函數之導數 13 2.2.3 權重函數與相對誤差收斂速率 16 2.3 赫麥特微分再生核內插法 18 2.3.1 赫麥特微分再生核內插函數 19 2.3.2 赫麥特微分再生核內插函數之導數 22 2.3.3 赫麥特內插函數之無網格適點法 28 第三章 拉格朗日內插函數無網格適點法之應用 31 3.1 軸力桿之靜態分析 31 3.2 二維勢能問題 34 3.3 二維彈性力學問題 40 3.3.1 基本驗證範例1 47 3.3.2 基本驗證範例2 47 3.3.3 懸臂深梁 51 3.3.4 內含圓孔之無限域平板 52 第四章 赫麥特內插函數無網格適點法之應用 60 4.1 梁撓曲之靜態分析 60 4.2 矩形板撓曲之靜態分析 64 4.3 圓板撓曲之靜態分析 80 4.3.1 基本驗證範例 80 4.3.2 圓板的非對稱分析 86 第五章 結論與展望 93 參考文獻 95

    Atluri S. N. and Zhu T. (1998), "A new meshless local Petro-Galerkin (MLPG) approach in computational mechanics.", Computational Mechanics 22: 117_127.
    Atluri S. N., Kim H. G. and Cho J. Y. (1999), "A critical assessment of the truly meshless local Petro-Galerkin (MLPG) and local boundary integral equation (LBIE) methods.", Computational Mechanics 22: 348_372.
    Atluri S. N., Zhu T. (2000), "New concepts in meshless methods.", International Journal for Numerical Methods in Engineering 47: 537_556.
    Aluru N. R. (2000), "A point collocation method based on reproducing kernel approximations.", International Journal for Numerical Methods in Engineering 47: 1083_1121.
    Atluri S. N. and Shen S. (2002), "The Meshless Local Petrov-Galerkin (MLPG) Method.", Tech Science Press, Encino, CA, USA.
    Belytschko T., Lu Y. Y. and Gu L. (1994), "Element-free Galerkin methods.", International Journal for Numerical Methods in Engineering 37: 229_256.
    Belytschko T., Krongauz Y., Organ D., Fleming M. and Krysl P. (1996), "Meshless methods: An overview and recent developments.", Computer Methods in Applied Mechanics and Engineering 139: 3_47.
    Boroomand B., Najjar M. and E. (2009), "The generalized finite point method.", Computational Mechanics 44: 173_190.
    Chen J. S., Pan C., Wu C. T. and Liu W. K. (1996), " Reproducing kernel particle methods for large deformation analysis of non-linear structures.", Computer Methods in Applied Mechanics and Engineering 139: 195_227.
    Chen J. S., Pan C. and Wu C. T. (1997), "Large deformation analysis of rubber based on a reproducing kernel particle method.", Computational Mechanics 19: 211_227.
    Chen J. S., Han W., You Y. and Meng X. (2003), "A reproducing kernel method with nodal interpolation property.", International Journal for Numerical Methods in Engineering 56: 935_960.
    Cheng R. and Liew K. M. (2009), "The reproducing kernel particle method for two-dimensional unsteady heat conduction problems.", Computational Mechanics 45: 1_10.
    De S. and Bathe K. J. (2000), "The method of finite spheres.", Computational Mechanics 25: 329_345.
    Gu Y. T. and Liu G. R. (2001), "A local point interpolation method for static and dynamic analysis of thin beams.", Computer Methods in Applied Mechanics and Engineering 190: 5515_5528.
    Huerta A. and Sonia F. M. (2000), "Enrichment and coupling of the finite element and meshless methods.", International Journal for Numerical Methods in Engineering 48: 1615_1636.
    Jarak T., Soric J. and Hoster J. (2007), "Analysis of shell deformation responses by the meshless local Petrov-Galerkin (MLPG) approach.", Computer Modeling in Engineering & Sciences 18: 235_246.
    Krongauz Y. and Belytschko T. (1996), "Enforcement of essential boundary conditions in meshless approximations using finite elements.", Computer Methods in Applied Mechanics and Engineering 131: 133_145.
    Lucy L. (1977), "A numerical approach to testing the fission hypothesis.", The Astronomical Journal 82: 1013_1024.
    Libersky L. D., Petschek A. G., Carney T. C., Hipp J. R. and Allahdadi F.A. (1993), " High strain Lagrangian hydrodynamics_a three-dimensional SPH code for dynamic material response.", Journal of Computational Physics 109: 67_75.
    Liu W. K. and Chen Y. (1995), "Wavelet and multiple scale reproducing kernel methods.", International Journal for Numerical Methods in Engineering 21: 901_931.
    Liu W. K., Jun S. and Zhang Y. F. (1995), "Reproducing kernel particle methods.", International Journal for Numerical Methods in Fluids 20: 1081_1106.
    Liu W. K., Chen Y., Chang C. T. and Belytschko T. (1996), "Advances in multiple scale kernel particle methods.", Computational Mechanics 21: 73_111.
    Liu W. K., Chen Y., Jun S., Chen J. S., Belytschko T., Pan C., Uras R. A. and Chang C. T. (1996), "Overview and applications of the reproducing kernel particle methods.", Archives of Computational Methods in Engineering 3: 3_80.
    Liszka T. J., Duarte C. A. M. and Tworzydlo W. W. (1996), "hp-meshless cloud method.", Computer Methods in Applied Mechanics and Engineering 139: 263_288.
    Li S. and Liu W. K. (1996), "Moving least-square reproducing kernel method (II) Fourier analysis.", Computer Methods in Applied Mechanics and Engineering 139: 159_193.
    Liu W. K., Chen Y., Uras R. A. and Chang C. T. (1996), "Generalized multiple scale reproducing kernel particle methods.", Computer Methods in Applied Mechanics and Engineering 139: 91_157.
    Liu W. K., Li S. and Belytschko T. (1997), "Moving least-square reproducing kernel methods (I) Methodology and convergence.", Computer Methods in Applied Mechanics and Engineering 143: 113_154.
    Li S. and Liu W. K. (1998), "Synchronized reproducing kernel interpolant via multiple wavelet expansion.", Computational Mechanics 21: 28_47.
    Li S. and Liu W. K. (1999), "Reproducing kernel hierarchical partition of unity, Part I_Formulation and theory.", International Journal for Numerical Methods in Engineering 45: 251_288.
    Li S. and Liu W. K. (1999), "Reproducing kernel hierarchical partition of unity, Part II_Applications.", International Journal for Numerical Methods in Engineering 45: 289_317.
    Liu G. R. and Gu Y. T. (2001), "A point interpolation method for two-dimensional solids.", International Journal for Numerical Methods in Engineering 50: 937_951.
    Li S. and Liu W. K. (2002), "Meshfree and particle methods and their applications.", Applied Mechanics Review 55: 1_34.
    Liew K. M., Ng T. Y. and Wu Y. C. (2002), "Meshfree method for large deformation analysis-a reproducing kernel particle approach.", Engineering Structures 24: 543_551.
    Li H., Ng T. Y., Cheng J. Q. and Lam K. Y. (2003), "Hermite_Cloud: a novel true meshless method.", Computational Mechanics 33: 30_41.
    Li S. and Liu W. K. (2004), "Meshfree Particle Methods.", Springer, Berlin, Germany.
    Liu W. K., Han W., Lu H., Li S. and Cao J. (2004), "Reproducing kernel element method, Part I: Theoretical formulation.", Computer Methods in Applied Mechanics and Engineering 193: 933_951.
    Li S., Lu H., Han W., Liu W. K. and Simkins D. C. (2004), "Reproducing kernel element method, Part II: Globally conforming Im/Cn hierarchies.", Computer Methods in Applied Mechanics and Engineering 193: 953_987.
    Lu H., Li S., Simkins D. C., Liu W. K. and Cao J. (2004), "Reproducing kernel element method, Part III: Generalized enrichment and applications.", Computer Methods in Applied Mechanics and Engineering 193: 989_1011.
    Liu G. R. and Gu Y. T. (2005), "An Introduction to Meshfree Methods and Their Programming.", Springer, The Netherlands.
    Liu G. R. and Gu Y. T. (2005), "Mesh free methods moving beyond the finite element method.", CRC Press, New York, USA.
    Liu X. and Tai K. (2006), "Point interpolation collocation method for the solution of partial differential equations.", Engineering Analysis with Boundary Elements 30: 598_609.
    Lee C., Kim D. W., Park S. H., Kim H. K., Im C. H. and Jung H. K. (2008), "Point collocation mesh-free using FMLSRKM for solving axisymmetric Laplace equations .", IEEE Transactions on Magnetics 44: 1234_1237.
    Kim D. W. and Kim Y. (2003), "Point collocation methods using the fast moving least-square reproducing kernel approximation.", International Journal for Numerical Methods in Engineering 56: 1445_1464.
    Monaghan J. J. (1988), "An introduction to SPH.", Computational Physics Communications 48:89_96.
    Nayroles B., Touzot G. and Villon P. (1992), "Generalizing the finite element method: diffuse approximation and diffuse elements.", Computational Mechanics 10: 307_318.
    Onate E. and Idelsohn S. (1988), "A meshfree finite point method for advective-diffusive transport and fluid flow problems.", Computational Mechanics 21: 283_292.
    Onate E., Idelsohn S., Zienkiewicz O. C. and Taylor R. L. (1996), "A stabilized finite point method for analysis of fluid mechanics problems.", Computer Methods in Applied Mechanics and Engineering 139: 315_347.
    Onate E., Idelsohn S., Zienkiewicz O. C. and Taylor R. L. (1996), "A finite point method in computational mechanics_Applications to convective transport and fluid flow.", International Journal for Numerical Methods in Engineering 39: 3839_3866.
    Onate E., Perazzo F. and Miquel J. (2001), "A finite point method for elasticity problems.", Computers & Structures 79: 2151_2163.
    Simkins Jr. D. C., Li S., Lu H. and Liu W. K. (2004), "Reproducing kernel element method, Part IV: Globally compatible triangular hierarchy.", Computer Methods in Applied Mechanics and Engineering 193: 1013_1034.
    Timoshenko S. P. and Woinowsky-Krieger S. (1959), "Theory of Plates and Shells.", McGraw-Hill, New York.
    Wang Q. X., Li H. and Lam K. Y. (2005), "Development of a new meshless_point weighted least squares (PWLS) method for computational mechanics.", Computational Mechanics 35: 170_181.
    Wu C. P., Chiu K. H. and Wang Y. M. (2008), "A differential reproducing kernel particle method for the analysis of multilayered elastic and piezoelectric plates.", Computer Modeling in Engineering & Sciences 27: 163_186.
    Wu C. P., Chiu K. H. and Wang Y. M. (2008), "A meshfree DRK-based collocation method for the coupled analysis of functionally graded magneto-electro-elastic shells and plates.", Computer Modeling in Engineering & Sciences 35: 181_214.
    Wu C. P., Chiu K. H. and Wang Y. M. (2008), "A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells.", Computers, Materials & Continua 8: 93_132.
    Wu C. P., Wang J. S. and Wang Y. M. (2009), "A DRK interpolation-based collocation method for the analysis of functionally graded piezoelectric hollow cylinders under electro-mechanical loads.", Computer Modeling in Engineering & Sciences 52: 1_37.
    Wu C. P., Chiu, K. H. and Wang Y. M. (2010), "RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates.", Composite Structures 10.1016/j.compstruct.2010.07.001
    Wang Y. M., Chen S. M. and Wu C. P. (2010), "A meshless collocation method based on the differential reproducing kernel interpolation.", Computational Mechanics 45: 585_606.
    Yang S. W., Wang Y. M., Wu C. P. and Hu H. T. (2010), "A meshless collocation method based on the differential reproducing kernel approximation.", Computer Modeling in Engineering & Sciences 60: 1_39.
    Zhao X., Liew K. M. and Ng T. Y. (2003), "Vibration analysis of laminated composite cylindrical panels via a meshfree approach.", International Journal of Solids and Structures 40: 161_180.
    Zhu T. and Atluri S. N. (1998), "A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method.", Computational Mechanics 21: 211_222.
    Zhang X., Song K. Z., Lu M. W. and Liu X. (2000), "Meshless methods based on collocation with radial basis functions.", Computational Mechanics 26: 333_343.
    Zhang X., Liu X. H., Song K. Z. and Lu M. W. (2001), "Least-squares collocation meshless method.", International Journal for Numerical Methods in Engineering 51: 1089_1100.
    Zhao X., Liew K. M., Ng T. Y. (2003), "Vibration analysis of laminated composite cylindrical panels via a meshfree approach.", International Journal of Solids and Structures 40: 161_180.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE