簡易檢索 / 詳目顯示

研究生: 鄭曉蔓
Cheng, Hsiao-Man
論文名稱: 船舶製造業焊接燻煙與反應性氧化物種逸散特徵及其應用
Characteristics of the emissions of welding fume and reactive oxygen species (ROS) from shipbuilding industries and their applications
指導教授: 蔡朋枝
Tsai, Peng-Chi
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 船舶製造業焊接燻煙反應性氧化物種排放率近場/遠場 模式
外文關鍵詞: shipbuilding industry, fume, reactive oxygen species (ROS), emission rate, near field/far field model
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為瞭解船舶焊接作業勞工可能暴露之焊接燻煙微粒與反應性氧化物種之逸散特徵並進一步應用於預測模式。主要研究內容可分為兩部分:(1)實驗室模擬焊接作業,本部分工作為建立金屬燻煙暴露腔,以船舶製造業最主要之二種焊接方法(包藥電焊(FCAW)與氣體金屬電弧焊(GMAW)),在三種不同焊材型號(KFX-71T、KFX-70T及KM-56)及三種不同操作條件(低電流及電壓(120 A, 22 V)、中電流及電壓(220 A, 26 V)及高電流及電壓 (300 A, 30 V))下,進行模擬焊接作業,以探討燻煙微粒之逸散特徵(粒徑分佈與濃度)及反應性氧化物種濃度之變化情形。(2)實際焊接作業之量測,經由勞工進行實際焊接作業,以比較利用模式所預測結果之差異。研究結果顯示:(1)本研究所探討之燻煙粒徑皆以單峰分佈為主,其粒徑範圍為0.33 – 0.57μm。而粒徑大小則受到所使用之焊接方法、操作電流與遮蔽氣體之不同有所差異,焊接方法以FCAW大於GMAW,操作電流越高其粒徑越大,遮蔽氣體中含有惰性氣體者會有較大之粒徑,另外燻煙中所含金屬之粒徑分佈,則以Pb的粒徑最大。(2)造成焊接燻煙之逸散濃度之差異,亦是受到不同之焊接方法、操作電流與遮蔽氣體而影響總燻煙與燻煙中金屬濃度之高低,分別以FCAW、高電流與含惰性氣體者之濃度較大。(3)焊接燻煙微粒之ROS濃度,研究結果顯示FCAW所產生之濃度高於GMAW且高電流亦有較高之濃度產生,發現ROS濃度會受到焊接時所需之輸入能量影響。(4)本研究利用近場/遠場模式預測燻煙之逸散濃度與實測值進行比較,發現對於NF之預測值與實測值有較大之誤差並有高估之現象,而對於FF之預測則有較佳之預測結果且其結果與實測值接近。

    The objective of this study was to characterize welding fume and ROS emitted from different welding processes and parameters and apply above results to predit. A metal fume chamber was established to simulate two major welding processes (including flux core arc welding (FCAW) and gas metal arc welding (GMAW)) and three operating conditions of the low input power (120 A, 22 V), optimal input power (220 A, 26 V) and high input power (300 A, 30 V) for shipbuilding industries. It is also to measure welding fume concentration of worker during real operation and to compare the predited value. The results show that (1) the particle size distributions for both FCAW and GMAW (MMAD= 0.33–0.57 μm) were unimode. The particle size distributions were affected by welding method, input power and shielding gas. The MMAD of FCAW, high input power and inert gases were the geater than others. The MMAD of Pb was greater than of Cr, Cu, Fe, Mn and Ni; (2) total fume and metal concentration were found a similar consistent trend as: FCAW > GMAW, high input power > optimal input power > low input power and inert gases > oxygoen gases; (3) ROS concentrations were found with a similar consistent trend as than of fume. The difference between these parameters resulted from the input power. (4) using N/F model (Near field/Far field model) to predict by applying these data from the metal fume chamber and comparing with the value of measuring real operative situation, these results showed that predicted value of NF was greater than measuring value and FF has a better prediction than of NF.

    目錄 摘要 I Abstract II 致謝 III 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻探討 4 2.1 船舶焊接業相關研究 4 2.2 金屬燻煙之相關介紹 5 2.3 反應性氧化物種之相關研究 8 2.4 Near field/Far field model之模式 10 第三章 研究方法與設備 13 3.1 研究架構 13 3.2 實驗室模擬 13 3.3 採樣方法 14 3.4 樣本分析 15 3.5 數據分析 17 3.6 現場驗證 20 第四章 研究品質控制 26 4.1 採樣品質控制 26 4.2 分析之品質控制 27 第五章 結果與討論 33 5.1 焊接燻煙之逸散特徵 33 5.2 焊接燻煙之逸散濃度 35 5.3 排放率、消耗率與排放係數之推估 39 5.4 N/F model預測燻煙濃度 40 第六章 結論與建議 54 6.1 結論 54 6.2 建議 54 第七章 參考文獻 55 附錄 61

    Antonini, J. M.; Clarke, R. W.; Murthy, G.. G.K.; Sreekanthan, P.; Jenkins, N. Freshly Generated Stainless Steel Welding Fume Induces Greater Lung Inflammation in Rats as Compares to Aged Fume. Toxicol. Lett. 1998, 77 – 86
    Antonini, J.M. Health effects of welding. Crit. Rev. Toxicol. 33, 61 – 103
    Bartold, P. M., Wiebkin, O.W. and Thonard, J.C. (1984) The effect of oxygen–derived free radicals on gingival xproteoglycans and hyaluronic acid, J. Periodontal Res., 19, 390 – 400
    Bonnet, P.; Binet, S.; Brandt, H; Keriech, A. J.; Lafontaine, M.; Nunge, H.; Morele, Y.; Groot, P. DE; Wissel, H.; Castegnaro, M. Inhalation Study on Exposure to Bitumen Fumes Part 1: Development and Validation of the Equipment. Ann. occup. Hyg., 2000, 44, 15 – 29
    Boelter, F. W.; Simmons, C. E.; Berman, L.; Scheff, P. Two–
    Zone Model Application to Breathing Zone and Area Welding Fume Concentration Data. Jour. of Occup. and Envir. Hyg. 2009, 6, 298 – 306
    Cathcart, R.; Schwiers, E.; Ames, B. N.; Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 1983, 134, 111 – 116
    Carter, J. D.; Ghio, A. J.; Samet, J. M.; Devlin, R. B. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol, Appl. Pharmacal. 1997, 146, 180–188.
    Dockery, D. W.; Pope, C. A. Acute respiratory effects of particulate air pollution. Anu. Rev. Public Health 1994, 15, 107–132.
    Dula, D. J.; Metal fume fever. J. Am. Coll. Emerg. Phys. 1979, 7 – 448
    Ellingsen, D. G.; Dubeikovskaya, L.; Dahl, K.; Chashchin, M.; Chashchin, V.; Zibarevb, E.; Thomassen, Y. Air exposure assessment and biological monitoring of manganese and other major welding fume components in welders. Jou. of Envir. Monitoring 2006, 8, 1078–1086
    Glinsmann, P. W.; Rosenthal F. S. Evaluation of an Aerosol Photometer for Monitoring Welding Fume Levels in a Shipyard. Amer. Indus. Hyg. Assoc. Jour. 1985, 46, 391–395
    Halliwell, B.; Cross, C. E. Oxygen–derived species: their relation to human disease and environmental stress, Environ. Health. Perspect. 1994, 10, 5 –12.
    Hellpointner, E.; Gaumlb, S. Detection of Methyl, Hydroxymethyl and Hydroxyethyl Hydroperoxides in Air and Precipitation. Nature 1989, 337 – 631
    Hovde, C. A.; Raynor, P. C. Effects of Voltage and Wire Feed Speed on Weld Fume Characteristics. Jour. of Occup. and Envir. Hyg. 2007, 4, 903 – 912
    Hunga, H. F.; Wang, C. S. Experimental determination of reactive oxygen species in Taipei aerosols. Aerosol Science 2001, 32, 1201 – 1211
    Huang, M. F.; Lin, W. L.; Ma, Y. C. A study of reactive oxygen species in mainstream of cigarette. Indoor Air 2005; 15, 135 – 140
    Hudock, S. D. Compendium of Ergonomic Analyses of Shipyard Work Processes. 2003, Emission Factors for Flux Core Rod Used in Gas Shielded Processes. THE NATIONAL SHIPBUILDING RESEARCH PROGRAM 2000, December 18
    Jenkins, N. T.; Mendez, P. F.; Eagar, T. W. Effect of Arc Welding Electrode Temperature on Vapor and Fume Composition.
    Jiang, J. M.; Li, X. B.; Wang, Z. H.; He, D. Y.; Wu, Y. L. Effects of morphology and granularity distribution of ferrite powder on fume formation rate of flux cored wire. Sci. and Tech. of Welding and Joining 2007, 12, 368–369
    John W. Cherrie. The Effect of Room Size and General Ventilation on the Relationship Between Near and Far–Field ConcentrationsApplied Occupational and Environmental Hygiene Volume 1999, 14, 539–546,
    Kalliomdki, P. L.; Korhonen, O.; Vaaranen, V.; Kalliomdki, K.; Koponen, M. Lung Retention and Clearance of Shipyard Arc Welders. Int. Arch. Occup. Environ. Health 1978, 42, 83 – 90
    Kallomki, P. L.; Kallomki, K.; Rahkonen, E.; Aittoniemi, K.; Follow–up–Study on the Lung Retention of Welding Fumes among Shipyard Welders. Ann. Occup. Hyg. 1983, 27, 449 – 452.
    Karlsen, J. T.; Farrants, G.; Torgrimsen, T.; Reith, A. Chemical Composition and Morphology of Welding Fume Particle and Grinding Dusts. Amer. Indus. Hyg. Assoc. Jour. 1992, 53, 290–297
    Kehrer, J. P. Free Radicals as Mediators of Tissue Injury and Disease. Crit. Rev. Toxicol. 1993, 23–21.
    Kensler, W.; Trush, M. A. Role of oxygen radicals in tumor promotion, Environ. Mutag. 1984, 6, 593 – 616.
    Kilgore, K. S.; Lucchesi, B. R. Reperfusion injury after myocardial infarction: the role of free radicals and the inflammatory response, Clin. Biochem. 1993, 26, 359 – 370.
    KIIT. The evaluation techniques of fume generation characteristics and feedability during arc welding. Seoul: Korea Institute of Industrial Technology. 1999, 34 – 70
    Liu, H. H.; Wu, Y. C.; Chen, H. L. Production of Ozone and Reactive Oxygen Species After Welding Arch Environ Contam. Toxicol. 2007, 53, 513 – 518
    Meeker, J. D.; Susi, P.; Flynn, M. R. Manganese and Welding Fume Exposure and Control in Construction. Jour. of Occup. and Envir. Hyg. 2007, 4, 943 – 951
    Midander, K.; Pan, J.; Wallinder I. O.; Leygraf, C. Metal release from stainless steel particles in vitro—influence of particle size. J. Environ. Monit. 2007, 9, 74 – 81
    Nicas, M. Two–zone model, chap. 8, in Mathematical Models for Estimating Occupational Exposures to Chemicals. AIHA 2000.
    Nicas, M. Using mathematical models to estimate exposure to workplace air contaminants. Journal of Chemical Health & Safety, May/June 2003, 14 – 21
    Nicas, M.; Neuhaus, J. Predicting Benzene Vapor Concentrations with a Near Field/Far Field Model J of Occup. and Envir. Hyg. 2008, 5, 599 – 608
    NIOSH. Manual of Analytical Methods no 7300. 1985.
    Oberd¨orster, G.; Ferin, J.; Finkelstein, G.; Wade, P. and Corson, N. Increased pulmonary toxicity of ultrafine particles II. Lung lavage studies. J. Aerosol Sci. 1990, 21, 384 – 387
    Ojima, J.; Shibata N.; Iwasaki T. Laboratory Evaluation of Welder’s Exposure and Efficiency of Air Duct Ventilation for Welding Work in a Confined Space. Industrial Health 2000, 38, 24 – 29
    Pal, P.K.; Samii, A.; and Caline, D.B. Manganese neurotoxicity: review of clinical features, imaging and pathology. Neurotoxicology 1999, 20, 227 – 238
    Plisko, M. J.; Spencer, J. W. Evaluation of a mathematical model for estimating solvent exposures in the workplace. J of Chem. Health & Safety, 2008, 14–20
    Pireas, I.; Quintino, L.; Miranda, R. M.; GOMES, J. F. P. Fume emissions during gas metal arc welding. Toxico. & Envir. Chem. 2006, 88, 385 – 394
    Pireas, I.; Quintino, L.; Miranda, R. M. Analysis of the influence of shielding gas mixtures on the gas metal arc welding metal transfer modes and fume formation rate. Materials and Design 2007, 28, 1623 – 1631
    Racette, B.A., Tabbal, S.D.; Jennings, D.; Good, L.; Perlmutter, J.S.; Evanoff, B. Prevalence of parkinsonism and relationship to exposure in a large sample of Alabama welders. Neurology 2005, 64, 230 – 235
    Renwick, L. C.; Brown, D.; Clouter, A.; and Donaldson, K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 2004, 61, 442 – 447
    Roels, H.; Lauwreys, R.; Buchet, J.P. Epidemiological survey among workers exposed to manganese: Effects on lung, central nervous system, and some biological indices. Am. J. Ind. Med. 1987, 11, 307 – 327
    Salim, A.S. Scavengers of oxygen–derived free radicals prolong survival in advanced colonic cancer. A new approach, Tumor Bio. 1993, 14, 9 – 17
    Sagai, M.; Saito, H.; Ichinose, T.; Kodama, M.; Mori, Y. Biological Effects of Diesel Exhaust Particles, I. In vitro production of Superoxide and in Vivo Toxicity in Mouse. Fre. Radic. Biol. Med. 1993, 14–37
    See, S. W.; Wang, Y. H.; Balasubramanian, R. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols. Environ. Research 2007, 103, 317 – 324
    Simonato, L.; Fletcher, A. C.; Andersen, A.; Anderson, K.; Becker, N.; Chang–Claude, J.; Ferro, G.; Gerin, M.; Gray, C. N.; Hansen, K. S.; Kalliomiiki, P–L.; Kurppa, K.; Langard, S.; Merlo, F.; Moulin, J. J.; Newhouse, M. L.; Peto, J.; Pukkala, E.; Sjogren, B.; Wild, P.; Winkelmann, R.; Saracci, R. A historical prospective study of European stainless steel, mild steel, and shipyard welders. British Jour. Indus. Med. 1991, 48, 145–154.
    Stephenson, D.; Seshadri, G.; Veranth, J. M. Workplace Exposure to Submicron Particle Mass and Number Concentrations From Manual Arc Welding of Carbon Steel. AIHA Journal 2003, 64, 516–521
    Sowards, J. W.; A. J. RAMIREZ, J. C. LIPPOLD, AND D. W. DICKINSON Characterization Procedure for the Analysis of Arc Welding Fume. WELDING RESEARCH MARCH 2008, 87, 76 – 83
    Uzel, N.; Sivas, A.; Uysal, M.; Oz, H. Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus, Horm. Metab. Res., 1987, 19, 89 – 90.
    Valko, M.; Morris, H. Cronin Metals, Toxicity and Oxidative Stress. Cu. Med. Chem. 2005, 12, 1161 – 1208
    Venkatachari, P.; Hopke, P. K.; Grover, B. D.; Eatough, D. J. Measurement of Particle–Bound Reactive Oxygen Species in Rubidoux Aerosols. Jour. of Atmo. Chem. 2005, 50, 49 – 58
    Wandersl, S. P.; Zielhuis, G. A.; Vreuls, H. J. H.; Zielhuis, R. L. Medical wastage in shipyard welders: a forty–year historical cohort study. Int. Arch. Occup. Environ. Health 1992, 64, 281 – 291
    Wurzelbacher, S. J.; Hudock, S. D.; Johnston, O. E.; Blade, L. M.; Shulman. S, A. A Pilot Study on the Effects of Two VentilationMethods on Weld Fume Exposures in a Shipyard Confined Space Welding Task. App. Occup. and Envir. Hyg. 2002, 17, 735 – 740
    Yoon, C. S.; Paik, N. W.; Kim, J. H. Fume Generation and Content of Total Chromium and Hexavalent Chromium in Flux–cored Arc Welding. Ann. occup. Hyg., 2003, 47, 671–680
    Zimmer, A. T.; Biswas, P. Characterization of the aerosols resulting from arc welding processes. Aerosol Science 2001, 32, 993–1008

    下載圖示 校內:2014-05-04公開
    校外:2015-05-04公開
    QR CODE