| 研究生: |
莊捷如 Chuang, Chieh-Ju |
|---|---|
| 論文名稱: |
光化測站VOCs之PMF受體模式貢獻源分析自動化 Automation of PMF Model Analysis for Source Apportionments of Volatile Organic Compounds Measured by PAMS |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 自動化 、正矩陣因子法 、揮發性有機物 、受體模式 、光化測站 |
| 外文關鍵詞: | automation, PMF, VOCs, receptor model, PAMS |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣中的揮發性有機物為生成臭氧之前驅物之一,對臭氧生成扮演了重要角色。為了分析揮發性有機物的貢獻源與貢獻比例,本研究以PMF受體模式之底層引擎—ME-2進行改寫,使之可以不需經由圖形化界面即可執行,藉由IM/IS法計算適當的污染源模擬數量,並自動判定各因子所屬之污染源。
使用改寫後的ME-2引擎,本研究以2014年1月朴子、臺西、臺南與小港光化測站的資料進行模擬,分析出四站各有4、4、4與5個主要污染源。
經過污染源定性篩選與定量計算,再將根據貢獻量日夜變化修正之後,朴子站之4個Factors分別為Gasoline exhaust (32%)、Lubricant refinery (31%)、Hydrocarbon storage (24%) 與Surface coating (14%);臺西站之4個Factors分別為Gasoline exhaust (46%)、Lubricant storage (21%)、Metallurgy (19%) 與Surface coating (14%);臺南站之4個Factors分別為Dry cleaning (30%)、Surface coating (24%)、Gasoline exhaust (23%) 與Household solvent use (23%);小港站之5個Factors分別為Surface coating (37%)、Dry cleaning (22%)、Gasoline exhaust (17%)、Hydrocarbon cracking (13%)與Liquefied petroleum gas (11%)。
Volatile organic compounds (VOCs) are a main group of air pollutants. The main propose of this study is to execute Positive Matrix Factorization model automatically and apportion the sources of simulation results.
Utilizing VOCs data at January, 2014, which was measured by Puzi, Taixi, Tainan, and Xiaogang PAMS of the Taiwan EPA, these data have been analyzed using the automatic PMF model and was used to insure the simulation results.
At Puzi the following source apportionments estimates were obtained: Gasoline exhaust (32%), Lubricant refinery (31%), Hydrocarbon storage (24%) and Surface coating (14%); at Taixi, this study identified 4 sources which were Gasoline exhaust (46%), Lubricant storage (21%), Metallurgy (19%) and Surface coating (14%); at Tainan, Dry cleaning (30%), Surface coating (24%), Gasoline exhaust (23%) and Household solvent use (23%) factors were identified; Factors identified at Xiaogang were Surface coating (37%), Dry cleaning (22%), Gasoline exhaust (17%), Hydrocarbon cracking (13%) and Liquefied petroleum gas (11%).
Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6, 2, 559-572.
Paatero P., U. Tapper, 1994. Positive Matrix Factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. .
Paatero P., P.K. Hopke, and K. Philip, 2003. Discarding or downweighting high-noise variables in factor analytic models. Anal. Chim. Acta 490, 277-289.
Norris, G., S. Brown, S. Bai, 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, U.S. Environmental Protection Agency, EPA/600/R-14/108.
Norris, G., K. Wade, P. Zahn, S. Brown, 2009. Guidance Document for PMF Applications with the Multilinear Engine, U.S. Environmental Protection Agency, EPA/600/R-09/032.
Yuan, Z., A. K. H. Lau, M. Shao, P. K. K. Louie, S. C. Liu, and T. Zhu, 2009. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. Journal of Geophysical Research, 114, D00G15, doi:10.1029/2008JD011190.
Yuan, Z., L. Zhong, A. K. H. Lau, J. Z. Yu, 2013. Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented. Atmospheric Environment 76, 162-172. doi:10.1016/j.atmosenv.2012.11.034
monitoring strategies
Peter K.K. Louie d
Jorquera, h., B. Rappengluck, 2004. Receptor modeling of ambient VOC at Santiago, Chile. Atmospheric Environment 38, 4243–4263, doi:10.1016/j.atmosenv.2004.04.030.
Xie, Y., C. M. Berkowitz, 2006. The use of positive matrix factorization with conditional probability functions in air quality studies: an application to hydrocarbon emissions in Houston, Texas. Atmospheric Environment 40, 3070–3091, doi:10.1016/j.atmosenv.2005.12.065.
Badol, C., N. Locoge, J. C. Galloo, 2008. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions: Part II: Source contribution assessment using the Chemical Mass Balance (CMB) model. Science of The Total Environment 389, 429–44. doi:10.1016/j.scitotenv.2007.09.002.
Choi, Y.-J., S.H. Ehrman, 2004. Investigation of source of volatile organic carbon in the Baltimore area using highly time-resolved measurements. Atmospheric Environment 38, 775–791. doi:10.1016/j.atmosenv.2003.10.004
Na, K., Y.P. Kim, K.C. Moon, I. Moon, K. Fung, 2001. Concentrations of volatile organic compounds in an industrial area of Korea. Atmospheric Environment 35, 2747–2756, doi: 10.1016/S1352-2310(00)00313-7
Buzcu, B., M.P. Fraser, P. Kulkarni, S. Chellam, 2007. Source identification and apportionment of fine particulate matter in Houston, TX using positive matrix factorization. Environmental Engineering Science 20, 533–545.
Buzcu, B., M.P. Fraser, 2006. Comparison of VOC emissions inventory data with source apportionment results for Houston, TX. Atmospheric Environment 42, 5032–5043.
Bhowmick, M., M. J. Semmens, 1994. Ultraviolet Photooxidation for the Destruction of VOCs in Air. Water Research, 28 (11) pp.2407-2415.
Song, Y., M. Shao, Y. Liu, S. Lu, W. Kuster, P. Goldan, and S. Xie, 2007. Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348-4353, doi:10.1029/2007JD004455.
Chan, C.-C., H. Ozkaynak, J. D. Spengler, L. Sheldon, 1991a. Driver Exposure to Volatile Organic Compounds, CO, Ozone, and NO2 Under Different Driving Conditions. Environmental Science & Technology 25 (5), 964-972.
Chan, C.-C., J. D. Spengler, H. Ozkaynak, M. Lefkopoulou, 1991b. Commuter Exposures to VOCs in Boston Massachusetts. Journal of the Air and Waste Management Association 41, 1594-1600.
De Bortoli M., E. Pecchio, H. Schauenburg, H. Schhtt, H. Vissers, 1993. Emission of Formaldehyde, Vinyl Chloride, VOCs and Plasticisers from Different Wall Coating Materials. Indoor Air 93. Proceeding of the 6th international conference on indoor air quality and climate. Helsinki, 41-38.
Kim, Y. M., S. Harrad, R. M. Harrison, 2001. Concentrations and Sources of VOCs in Urban Domestic and Public Microenvironments. Environmental Science & Technology 35, 997-1004.
Brown S.G., A. Frankel, H.R. Hafer, 2007. Source apportionment of VOCs in Los Angeles area using positive matrix factorization. Atmospheric Environment, 41, 227-237.
Mølhave, L., G. Clausen, B. Berglund, J. De Ceaurriz, A. Kettrup, T. Lindvall, M. Maroni, C. Pickering, U. Risse, H. Rothweiler, B. Seifert, and M. Younes, 1997. Total Volatile Organic Compounds (TVOCs) in Indoor Air Quality Investigations. Indoor Air 7, 225-240.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air & Waste 44, 881-899.
Kampa, M., and E. Castanas, 2008. Human health effects of air pollution. Environmental Pollution 151, 362-367.
Guo.H, 2011. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta?
Hoque, R.R., P. S. Khillare, T. Agarwal, V. Shridhar, and S. Balachandran, 2008. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of The Total Environment 392, 30-40.
Lau, A.K.H., Z. Yuan, J. Z. Yu, and P.K.K. Louie, 2010. Source apportionment of ambient volatile organic compounds in Hong Kong. Science of The Total Environment 408, 4138-4149.
Lee, E., C.K. Chan, and P. Paatero, 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Liao, H. T., C. P. Kuo, P. K. Hopke, and C. F. Wu, 2013. Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res 13, 1253-1262.
Leuchner, M., and B. Rappenglück, 2010. VOC source–receptor relationships in Houston during TexAQS-II. Atmospheric Environment 44, 4056-4067.
Min, S., W. Bin, L. Sihua, Y. Bin, and W. Ming, 2010. Effects of Beijing Olympics Control Measures on Reducing Reactive Hydrocarbon Species. Environmental science & technology 45, 514-519.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems 37, 23-35.
Seila, R.L., H. H. Main, J. L. Arriaga, V. G. Martı́nez, and A. B. Ramadan, 2001. Atmospheric volatile organic compound measurements during the 1996 Paso del Norte Ozone Study. Science of The Total Environment 276, 153-169.
Zhang, Y., X. Wang, B. Barletta, I. J. Simpson, D. R. Blake, X. Fu, Z. Zhang, Q. He, T. Liu, X. Zhao, and X. Ding, 2013. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials 250–251, 403-411.
Watson J.G., J.C. Chow, and E.M. Fujita , 2001. Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment 35, 1567-1584.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air & Waste 44, 881-899.
Jenkin, M.E., K. C. Clemitshaw, 2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment 34, 2499-2527.
Sillman, S., 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33, 1821-1845.
Cetin, E., M. Odabasi, R. Seyfioglu, 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Science of The Total Environment 312, 103-112.
Kumar, A., I. Víden, 2007. Volatile Organic Compounds: Sampling Methods and Their Worldwide Profile in Ambient Air. Environ Monit Assess 131, 301-321.
Rasmussen, R.A., C. A. Jones, 1973. Emission isoprene from leaf discs of hamamelis. Phytochemistry 12, 15-19.
Sharkey, T.D., E. L. Singsaas, 1995. Why plants emit isoprene. Nature 374, 769-769.
Edgerton, S.A., Holdren, M.W., Smith, D.L., Shah, J.J., 1989. Inter-Urban Comparison of Ambient Volatile Organic Compound Concentrations in U.S. Cities. JAPCA 39, 729-732.
Lee, S.C., M. Y. Chiu, K. F. Ho, S. C. Zou, X. Wang, 2002. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48, 375-382.
Srivastava, A., A. E. Joseph, S. Devotta, 2006. Volatile organic compounds in ambient air of Mumbai—India. Atmospheric Environment 40, 892-903.
Räisänen, J, R. Niemelä & C. Rosenberg, 2001. Tetrachloroethylene Emissions and Exposure in Dry Cleaning. Journal of the Air & Waste Management Association 51(12), 1671-1675, doi: 10.1080/10473289.2001.10464396.
Marciano S., K. Saritha, and J. Kuruvilla, 2008. Source Characterization of Volatile Organic Compounds Affecting the Air Quality in a Coastal Urban Area of South Texas. Int. J. Environ. Res. Public Health 5(3), 130-138.
Seinfeld, J. H., S. N. Pandis, 1998. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. Wiley, ISBN: 978-0-471-72018-8.
Chin, J.-Y, and S. A. Batterman, 2012. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling, Chemosphere, 86, 951–958.
Hopke, P.K., 1991. An Introduction to Receptor Modeling. Chemometrics and Intelligent Laboratory Systems 10(1-2), 21-43.
Miller, M. S., S. K. Friedlander, G. M. and Hidy, 1972. A Chemical Element Balance for the Pasadena Aerosol. Journal of Colloid and Interface Science 30(1), 165-176, doi:10.1016/0021-9797(72)90152-X.
Viana, M., M. Pandolfi, M. C. Minguillo´n, X. Querol, A. Alastuey, E. Monfort, I. Celades, 2008. Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmospheric Environment 42, 3820–3832.
校內:2021-08-21公開