簡易檢索 / 詳目顯示

研究生: 程耀霆
Chen, Yao-tin
論文名稱: 以流道冷卻法製備A356鋁合金及其參數與半固態性質之研究
Study on the effect of parameters of cooling slope technique and the semisolid properties of cooling slope casting A356 Al alloys
指導教授: 曹紀元
Tsao, Chi-Yuan A.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 115
中文關鍵詞: 半固態製程流道冷卻法硬度粗化鋁合金
外文關鍵詞: cooling slope technique, A356, hardness, semi-solid process, coarsening
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cooling slope technique為一新興之半固態製程,其特色為不需外力便可製作出球狀晶。本文以架設此製程之架構為出發點,接著以田口式方法設計實驗參數,A356鋁合金作為原料,探討熔湯澆鑄溫度、流道傾斜角度和溫控系統冷卻速率對產率及鑄錠顯微組織之影響,並決定出最佳參數以備後續之粗化實驗使用。
      粗化實驗除了上述新製程之鑄錠外,另使用了噴覆成型以及傳統鑄造製備之鑄錠,探討三種製程於不同持溫溫度和持溫時間下,鑄錠顯微組織的差異,以及利用晶粒尺寸與持溫時間之關係,探討不同持溫溫度下,該製程之粗化指數與粗化速率常數,並與理論值作比較後,再以EPMA分析上述三種製程之鑄錠經過熱處理後微偏析之改善,最後使用維氏與洛氏硬度試驗測試熱處理前後微觀與巨觀之硬度值。

    The cooling slope technique is the oncoming semi-solid process. The feature of this process is that it can achieve non-dendritic structure without any external force. In this study, we established the equipment of cooling slope technique first and then the Taguchi method was applied to design and analyze the experiments to study the effects of the pouring temperature, inclined slope angle and melt cooling rate on the microstructures of A356 alloy and its yields. The optimum parameters would be decided for coarsening experiment later.
    In addition to cooling slope casting billet, spray-formed and as-cast billets were employed in the coarsening experiment. This experiment focused on the relation between microstructure and two parameters including various holding temperature and holding time. Subsequently, we used the relation between holding time and grain size to obtain the coarsening exponent and coarsening rate constant. The calculating value of coarsening rate constant would be compared with the experimental value as well. The EPMA was employed to analyze the microsegregation of the material producing by three processes with heat treatment. Finally, we use micro-Vickers hardness and Rockwell hardness tests to measure the hardness of the material producing by three processes.

    致謝 II 中文摘要 III Abstract IV 總目錄 V 第一章 序論 1 1-1前言 1 1-2研究動機 2 第二章 理論基礎與文線回顧 3 2-1半固態製程簡介 3 2-2 Cooling slope technique簡介 5 2-3噴覆成型簡介 7 2-4粗化實驗簡介 7 2-5田口式設計方法 10 第三章 實驗步驟與方法 12 3-1實驗流程 12 3-2實驗材料 12 3-3 Cooling slope technique架構之設計 13 3-4 Cooling slope technique之A356鋁合金製備 14 3-5 A356鋁合金之粗化實驗 16 3-6熱分析 17 3-7 A356鋁合金之微偏析分析 18 3-8硬度分析 18 3-9其他實驗設備及實驗方法 18 第四章 結果與討論 20 4-1 Cooling slope technique架構架設 20 4-2材料之製備 21 4-3第一階段:製程參數對產率之影響 21 4-4第二階段:製程參數對顯微組織之影響 22 4-4.1顯微組織分析 23 4-4.2熔湯澆鑄溫度對晶粒尺寸的影響 25 4-4.3流道傾斜角度對晶粒尺寸的影響 25 4-4.4溫控系統降溫速率對晶粒尺寸的影響 26 4-4.5熔湯澆鑄溫度對晶粒形狀的影響 27 4-4.6流道傾斜角度對晶粒形狀的影響 27 4-4.7溫控系統降溫速率對晶粒形狀的影響 28 4-4.8熔湯澆鑄溫度對固相分率的影響 28 4-4.9流道傾斜角度對固相分率的影響 28 4-4.10溫控系統降溫速率對固相分率的影響 29 4-4.11 Cooling slope technique之最佳化參數 29 4-5鋁合金半固態粗化實驗之結果 30 4-5.1鑄造材顯微組織變化 30 4-5.2等軸非樹枝狀晶材料之顯微組織變化與比較 31 4-5.4粗化指數n值之決定 33 4-5.5粗化速率常數K值之決定 35 4-5.6粗化速率常數之討論以及與LSW理論值之比較 36 4-6 EPMA之分析結果 38 4-7硬度分析 39 第五章 結論 41 第六章 參考文獻 43 表目錄 Table.1 Summary of n at different condition [18,19] 50 Table.2 Chemical composition of A356 50 Table.3 Three various parameters arranged by Taguchi method. 50 Table.4 The experimental parameters (Φ, solid fraction) 51 Table.5 Yield in first part of experiment. 51 Table.6 Pouring Temp.VS. Yield and Inclined slope angle VS.Yield. 51 Table.7 Grain size (μm) distribution in each billet. 52 Table.8 Melt cooling rate vs. Deviation 52 Table.9 Shape factor distribution in each billet. 52 Table.10 Solid fraction (%) distribution. 53 Table.11 Pouring temperature VS. Grain size (μm). 53 Table.12 Inclined slope angle VS. Grain size (μm). 53 Table.13 Tt ,Tb and T on the inclined slope. 54 Table.14 T VS. Inclined angle 54 Table.15 Melt cooling rate VS. Grain size (μm). 54 Table.16 Pouring Temp. VS. Shape factor 54 Table.17 Inclined slope angle. VS. Shape factor 55 Table.18 Melt cooling rate VS. Shape factor. 55 Table.19 Pouring Temp. VS. Solidfraction. 55 Table.20 Inclined slope angle VS. Solidfraction. 55 Table.21 Melt cooling rate VS. Solidfraction. 55 Table.22 Grain size (μm) and shape factor in the coarsening experiment. 56 Table.23 Regression coefficient(r2) for linear fits to Rn of spray-formed A356 Al alloys at various coarsening exponent and temperature. 56 Table.24 Regression coefficient(r2) for linear fits to Rn of cooling slope A356 Al alloys at various coarsening exponent and temperature. 57 Table.25 Regression coefficient and coarsening exponent. 57 Table.26 The parameter[30] in KLSW 58 Table.27 Cβ and C∞ at various temperature(at%) 58 Table.28 Coarsening rate constant. 58 Table.29 The material number of the different processing parameters 59 Table.30 The results of the EPMA experiment. 60 Table.31 The microhardness profiles in cast, cooling slope and spray formed A356 Al alloys at various holding temperature and holding time. 61 Table.32 The macrohardness profiles in cast, cooling slope and spray formed A356 Al alloys at various holding temperature and holding time. 62 圖目錄 Fig.1Relation of apparent viscosity and solid fraction of Sn-15%Pb.[1] 63 Fig.2 Illustration of new rheocasting.[24] 63 Fig.3 Situation at the tip of a protrusion formed at the solid/liquid 64 Fig.4 Flow chart. 65 Fig.5 Cooling slope technique. 66 Fig.6 Illustration of cooling slope technique. 66 Fig.7 A356 solid fraction vs. temperature. 67 Fig.8a New rheocasting equipment. 67 Fig.8b Cooling slope technique. 68 Fig.9 Microstructure of new rheocasting. 68 Fig.10 Sample positions on the billet. 69 Fig.11 S/N ratio(yield) vs. Pouring temperature. 69 Fig.12 S/N ratio(yield) vs. Inclined slope angle. 69 Fig.13 The slurries deposit on the inclined slope. 70 Fig.14 Microstructure of (a)conventional cast, (b)as-cast material. (c)S/N ratio(deviation) VS. Melt cooling rate 70 Fig.15 Micrographs of A356 alloys obtained from experiment I. 71 Fig.16 Micrographs of A356 alloys obtained from experiment II. 72 Fig.17 Micrographs of A356 alloys obtained from experiment III. 73 Fig.18 Micrographs of A356 alloys obtained from experiment IV. 74 Fig.19 Micrographs of A356 alloys obtained from experiment V. 75 Fig.20Micrographs of A356 alloys obtained from experiment VI. 76 Fig.21 Micrographs of A356 alloys obtained from experiment VII. 77 Fig.22 Micrographs of A356 alloys obtained from experiment VIII. 78 Fig.23 Micrographs of A356 alloys obtained from experiment IX. 79 Fig.24 S/N ratio(grain size) vs. pouring temperature. 80 Fig.25 S/N ratio(grain size) vs. inclined slope angle. 80 Fig.26 S/N ratio(grain size) vs. inclined slope angle. 80 Fig.27 S/N ratio(grain size) vs. Temp. controlled device cooling rate. 80 Fig.28 S/N ratio(shape factor) vs. Pouring temp. 81 Fig.29 S/N ratio(shape factor) vs. Inclined slope angle. 81 Fig.30 S/N ratio(shape factor) vs. Temp. controlled device cooling rate. 81 Fig.31 S/N ratio(solidfraction) vs. Pouring temp. 81 Fig.32 S/N ratio(solidfraction) vs. Inclined slope angle. 82 Fig.33 S/N ratio(solidfraction) vs. Temp. controlled device cooling rate. 82 Fig.34 Microstructures of as-cast A356 alloys holding at 580°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 83 Fig.35 Microstructures of as-cast A356 alloys holding at 590°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 84 Fig.36 Microstructures of as-cast A356 alloys holding at 600°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 85 Fig.37 Microstructure of spray-formed A356 alloy. 86 Fig.38 DSC traces for the as-cast、as-spray formed and CS-casting A356. 86 Fig.39 Microstructures of spray-formed A356 alloys holding at 580°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 87 Fig.40 Microstructures of spray-formed A356 alloys holding at 590°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 88 Fig.41 Microstructures of spray-formed A356 alloys holding at 600°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 89 Fig.42 Microstructures of cooling slope A356 alloys holding at 580°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 90 Fig.43 Microstructures of cooling slope A356 alloys holding at 590°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 91 Fig.44 Microstructures of cooling slope A356 alloys holding at 600°C for (a)150sec,(b)300sec,(c)600sec,(d)900sec,(e)1200sec,(f)2400sec. 92 Fig.45 The shape factor of as-spray formed A356 during different holding time. 93 Fig.46 The shape factor of CS-casting A356 during different holding time. 93 Fig.47 Plot of Rn-R0n vs. holding time for as-spray formed A356 (a) n=2 and (b) n=3. 94 Fig.48 Plot of Rn-R0n vs. holding time for CSasting A356 (a) n=2 and (b) n=3. 94 Fig.49 Regression coefficient for linear fits to Rn for spray-formed A356 alloy heat treatment Temp. of 580°C, 590°C, 600°C with n=2 to 3.5. 95 Fig.50 Regression coefficient for linear fits to Rn for cooling slope casting A356 alloy heat treatment Temp. of 580°C, 590°C, 600°C with n=2 to 3.5. 95 Fig.51 Coarsening curve for (a) spray-formed, (b) cooling slope casting. 96 Fig.52 f(Φ) and α varied with volume fraction(Φ)[20,30]. 96 Fig.53 EPMA results of as-cast A356 alloy(sample 1). 97 Fig.54 EPMA results of as-cast A356 alloy holding at 580°C for 600sec(sample 2). 98 Fig.55 EPMA results of as-cast A356 alloy holding at 580°C for 2400sec(sample 3). 99 Fig.56 EPMA results of as-cast A356 alloy holding at 600°C for 600sec(sample 4). 100 Fig.57 EPMA results of as-cast A356 alloy holding at 600°C for 2400sec(sample 5). 101 Fig.58 EPMA results of cooling slope casting A356 alloy(sample 6). 102 Fig.59 EPMA results of cooling slope casting A356 alloy holding at 580°C for 600sec(sample 7). 103 Fig.60 EPMA results of cooling slope casting A356 alloy holding at 580°C for 2400sec(sample 8). 104 Fig.61 EPMA results of cooling slope casting A356 alloy holding at 600°C for 600sec(sample 9). 105 Fig.62 EPMA results of cooling slope casting A356 alloy holding at 600°C for 2400sec(sample 10). 106 Fig.63 EPMA results of spray-formed A356 alloy (sample 11). 107 Fig.64 EPMA results of spray-formed A356 alloy holding at 580°C for 600sec(sample 12). 108 Fig.65 EPMA results of spray-formed A356 alloy holding at 580°C for 2400sec(sample 13). 109 Fig.66 EPMA results of spray-formed A356 alloy holding at 600°C for 600sec(sample 14). 110 Fig.67 EPMA results of spray-formed A356 alloy holding at 600°C for 2400sec(sample 15). 111 Fig.68 EPMA results of 15 samples. 112 Fig.69 Optical micrographs show the indentation of each sample. 113 Fig.70 The microhardness profiles in cast, cooling slope and spray formed A356 Al alloys at various holding temperature and holding time. 114 Fig.71 Optical micrograph shows the indentation of the Rockwell hardness test. 114 Fig.72 The macrohardness profiles in cast, cooling slope and spray formed A356 Al alloys at various holding temperature and holding time. 115

    1.M.C Flemings,”Behavior of Metal Alloys in the Semisolid State”,Metallurgical Transaction A, Vol.22, (1991), pp.957-981.
    2.M.P.Kenny, J.A.Courtois, R.D.Evans, G.M.Farrior, C.P.Kyonka, A.A.Koch, and K.P,Young,“Semisolid Metals Casting and Forging”,in Metals Handbook, 9thedn.,Vol.15, Casting, ASM,(1998), pp.327-338
    3.楊智超,“鎂合金材料及新製程發展”,工業材料雜誌,152期,(1999), pp.72-80
    4.A. Mitsuru, S. Hiroto, H. Yasunori, S. Tatsuo, S. Satoru, Y. Atsushi, “Method and Apparatus for Shaping Semisolid Metals”,UBE Patent EP0745694 A1, (1996).
    5.Toshio Haga, P. Kapranos,”Simple rheocasting processes”,Journal of Materials Processing Technology 130–131 (2002), pp.594–598
    6.P. J. Uggowitzer, H.Kaufmann,”Evolution of Globular Microstructure in New Rheocasting and Super Rheocasting Semi-Solid Slurries”, steel research int. 75 (2004) No.8/9, pp.525-530
    7.A.R.E.Singer,”Principles of Spray Rolling of Metals”,Metals and Materials, Vol.4, (1970), pp.246-257
    8.A.R.E.Singer,”Aluminum and Al-alloy Strip Produced by Spray Deposition and Rolling”,J.Int.Met. , Vol.100 (1972), pp.185-190
    9.Y.Fuxiao, C.Jianzhong, S.Ranganathan and E.S.Dwarakadasa, “Fundamental difference between Spray Forming and other Semisolid Process”,Materials Science and Engineering A, Vol.304-306, (2001), pp.621-626
    10.P.S.Grant, W.T.Kim and B.cantor,”Spray Forming of Aluminum-Copper alloys”,Material Science and Engineering A, Vol.134, (1991), pp.1111-1114
    11.曹紀元, “噴覆成型技術及其產品近況簡介”, 工業材料雜誌,186期,(2002), pp.158-175
    12.S.Kleiner, O.Beffort, P.J.Uggowitzer,”Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state”,Scripta Materialia, Vol.51, (2004), pp.405-410
    13.J.G.Wang, P.Lu, H.Y.Wang and Q.C.Jiang,”Effect of predeformation on the semisolid microstructure of Mg-9Al-0.6Zn alloy”,Materials letters, Vol.58, (2004), pp.3852-3856
    14.E.Tzimas, A.Zavaliangos,”Evolution of near-equiaxed microstructure in the semisolid stata”,Material Science and Engineering A, Vol.289, (2000), pp.228-240
    15.I.M.Lifshitz, V.V.Slyozov,”The kinetics of precipitation from supersaturated solid solutions”,J. Phys. Chem. Solid, Vol.19, (1961), pp.35-30
    16.C. Wagner,” Theory of precipitate change by redissolution”, Z. Elektrochem, Vol.65 (1961), pp.581–594.
    17.L.Ratke, W.K.Thieringer,”Influence of Particle Motion on Ostwald ripening in Liquids”,Acta.Metallurgica, Vol.33, (1985), pp.1793-1802
    18.G.Wan, P.R.Sahm,”Particle Characteristics and Coarsening Mechanism in Semi-Solid Processing”,Processing of Semi-Solid Alloys and Composites, Ed. By S.B.Brown and M.C.Flemings, (1992), pp.328-335
    19.G.Wan, P.R.Sahm,”Ostwald Ripening in the Isothermal Rheocasting Process”,Acta Metall.Mater., Vol.38, (1990), pp.967-972
    20.P.W. Voorhees, M. Glicksman,” Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics” Metall. Trans. A 15A, (1984), pp.1081–1088
    21.S.C. Hardy, P.W. Voorhees,” Ostwald ripening in a system with a high volume fraction of coarsening phase” Metall. Trans. A. 19A,(1988), pp.2713–2721
    22.李輝煌, “田口方法-品質設計的原理與實務”, 高立圖書有限公司, (2000)
    23.S. Nafisi, O. Lashkari, R. Ghomashchi, F. Ajersch, A. Charette,” Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al–Si slurries”, Acta Materialia Vol.54, Issue 13 (2006), pp. 3503–3511
    24.E. Cardoso, H. V Atkinson and H. Jones,“Microstructural evolution of A356 during NRC processing”,8th Int. SSP. Conf. Limassol, Cyprus, 21-23 September 2004, published by TMS
    25.D.J. Browne, M.J. Hussey, A.J. Carr and D. Brabazon,“Direct Thermal Method: new Process for Development of Globular Alloy Microstructure”,Int. Journal of Cast Metals Research, 16, No.3, (2003), pp 1-9
    26.M.A.Easton, H.Kaufmann, W.Fragner,”The effect of chemical grain refinement and low superheat pouring on the structure of NRC castings of aluminium alloy Al–7Si–0.4Mg”,Material Science and Engineering A, Vol.420, (2006), pp.135-143
    27.H. Kaufmann, W. Fragner and P. J. Uggowitzer,” Influence of variations in alloy composition on castability and process stability.”,International Journal of CastMetals Research, Vol.18, No.5, (2005)
    28.Omid Lashkari, Shahrooz Nafisi , Reza Ghomashchi,” Microstructural characterization of rheo-cast billets prepared by variant pouring temperatures”,Materials Science and Engineering A 441, (2006), pp.49–59
    29.E.D. Manson-Whitton, I.C. Stone , J.R. Jones, P.S. Grant, B. Cantor,” Isothermal grain coarsening of spray formed alloys in the semi-solid state”,Acta Materialia, 50, (2002), pp.2517–2535
    30.C-H. Chiang, Chi Y.A. Tsao,” Si coarsening of spray-formed high loading hypereutectic Al–Si alloys in the semisolid state” Materials Science and Engineering A 396 (2005) pp.263–270.
    31.D. Emedi, J.E. Gruzleski, and J.M. Toguchi,” The Effect of Na and Sr Modification on Surface Tension and Volumetric Shrinkage A356 Alloy and Their Influence on Porosity of Formation”, Metallurgical Transactions B, Vol.24B, December 1993—1063
    32.M. F. Zhu, J. M. Kim and C. P. Hong,” Modeling of Globular and Dendritic Structure Evolution in Solidification of an Al–7mass%Si Alloy”,ISIJ International, Vol. 41, No. 9, (2001), pp. 992–998
    33.J.Lipton, M.E.Glicksman, W.Kurz,” Dendritic Growth into Undercooled Alloy Melts”,Materials Science and Engineering Vol65, (1984), pp.57-63
    34.Shahrooz Nafisi, Reza Ghomashchi,” The effect of dissolved titanium on the primary a-Al grain and globule size in the conventional and semi-solid casting of 356 Al–Si Alloy”,J Mater Sci ,Vol.41, (2006) pp. 7954–7963
    35.Michel Perez,” Gibbs–Thomson effects in phase transformations”, Scripta Materialia ,Vol.52 ,(2005) ,pp.709–712
    36.J. D. Robson,” Modelling the evolution of particle size distribution during nucleation, growth and coarsening”,Materials Science and Technology Vol. 20 ,(2004) ,p.441
    37.A.M. Kliauga, M. Ferrante,” Liquid formation and microstructural evolution during re-heating and partial melting of an extruded A356 aluminium alloy”,Acta Materialia ,Vol.53 ,(2005) ,pp.345-356
    38.Yucel Birol,“A357 thixoforming feedstock produced by cooling slope casting”,Journal of Materials Processing Technology ,Vol.186 ,(2007), pp.94–101
    39.Shahrooz Nafisi, Reza Ghomashchi,” The Microstructural Characterization of Semi-Solid Slurries”JOM, June ,(2006) ,pp.24-30
    40.H. Wang, D. H. StJohn, C.J. Davidson, and Z. Ning,“Controlled Nucleation Method for Formation of Semisolid Feedstock”,Proc of the 8th Int Conf on Semi-solid Processing of Alloys and Composites,Limassol, Cyprus,(2004), pp.269-276.
    41.J.A. Yurko, R.A. Martinez, M.C. Flemings,” SSRTM: The Spheroidal Growth Route to Semi-Solid Forming”,Proceeding S2P 8th International Conference, September, (2004).
    42.S.I. Kwon, S.J. Kim, J.Y.Byun, H.P.Ha, J.D.Shim,” Simple preparation of AZ91 magnesium alloy slurries for rheoforming”, Journal of Mat. Sci. Letter ,Vol.22, (2003), pp.199-200
    43.F.Pahlevani, Y.Endo, J.Yaokawa, M.Itamura, M.Kikuchi, O.Nagasawa and K.Anzai,” Development of cup-cast method; semi-solid slurry preparation without external stirring force”, Vol. 116-17, (2006), pp. 358-361
    44.M,Rappaz and Ch.-A. Gandin,” Probabilistic Modeling of Microstructure Formation in Solidification Processes”,Acta metal. Mater, Vol.41, No.2 (1993), pp.345-360
    45.R.Sasikumar and R.Sreenicasan,” Two Dimensional Simulation of Dendrite Mophology”,Acta metal. Mater, vol.42, No.7, (1994),pp.2381-2386
    46.W. Bender, L. Ratke,” Ostwald ripening of cobalt particles in liquid copper”,Scripta Metall. Mater. 28, (1993), pp.737–742.
    47.Yalin Lu, Miaoquan Li, Yong Niu, and Xingcheng Li,” Microstructure and Element Distribution during Partial Remelting of an Al-4Cu-Mg alloy”,Journal of Materials Engineering and Performance, Volume 17(1) February ,(2008), pp.25-29
    48.Helmut Kaufmann and Peter J. Uggowitzer,” Fundamentals of the New Rheocasting Process for Magnesium Alloys”,Advanced Engineering Materials 2001, 3, No. 12, pp.963-967
    49.V.Laxmarlan,” The Gibbs-Thomson Effect During Cellular and Dendritic Solidification”,Scripta Materialia, Vol. 37, No. 7,(1997), pp. 955-962
    50.L.Y. Zhang, B.D. Zhou, Z.J. Zhan, Y.Z. Jia, S.F. Shan, B.Q. Zhang, W.K. Wang,” Mechanical properties of cast A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium”, Materials Science and Engineering A 448 (2007) 361–365.

    下載圖示 校內:2010-01-20公開
    校外:2012-01-20公開
    QR CODE