簡易檢索 / 詳目顯示

研究生: 黃卲博
Huang, Shao-Po
論文名稱: 以資料深度建構無母數管制圖
Nonparametric Control Chart Based on Data Depth
指導教授: 張裕清
Chang, Yu-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 統計製程管制資料深度無母數管制圖Wilcoxon rank-sum 統計量平均連串長度蒙地卡羅模擬
外文關鍵詞: statistical process control, data depth, nonparametric control chart, Wilcoxon rank-sum statistic, Monte Carlo simulation
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著市場競爭,企業為了降低內部及外部的不良品成本,品質管制越來越受到重視。因此大多企業會使用不同的方法來監控生產製程的穩定性,例如統計製程管制(SPC)即是一套常用的工具,主要用來監控製程有無發生變異。傳統在建構管制圖時常會假設資料的參數已知且來自於特定分配,其中最常被假設的即為常態分配,但在實務上常態分配的基本假設不一定會被滿足,尤其在生產初期,因為樣本數不足,更不容易符合常態分配的基本假設,一旦使用錯誤的分配,將會影響所建構管制圖的績效。而為了避免分配假設錯誤的情況發生,無母數管制圖的方法被提出來,其主要的優勢為當母體分配未知時,可以維持一定的監控能力。資料深度(Data Depth)的方法可以辨別一筆資料在整體資料中是靠近中心或位於邊緣。其中深度值越高即代表越接近中心,反之則越靠近邊緣,這方法不只可以使用在單變量的資料,更適合使用於多變量型態資料的判讀。本研究以資料深度的概念結合無母數管制圖,目的是使用穩定狀態所收集的參考資料與新加入的測試資料進行比較,主要用來監控兩組資料是否具有相同的離散程度。其執行方法為從穩定狀態收集一組參考資料,並將所要監控的資料採用由最新一期往前選取的方式加入測試資料中,目的是能有效的利用最新樣本的資訊,再將參考資料與測試資料結合,計算出每筆資料的資料深度值,並透過無母數Wilcoxon rank-sum統計量進行標準化後來建構無母數管制圖。而本研究探討四種不同的資料深度,分別為Simplicial Depth、Tukey Depth、 Spatial Depth、Projection Depth,最後在比較哪一個資料深度在本論文所建構的管制圖有較好的績效表現。由結果分析顯示以Projection深度建構之管制圖在監控離散程度的績效表現上均優於其他深度函數,且與比較之管制圖相比,在離散程度發生小變動時有較好的監控能力。

    In this study, we construct the nonparametric control chart based on data depth(NP-DDC). This method uses steady state data to compare with newly added data. Consider two samples from two univariate distributions which are identical except for a possible dispersion difference. The execution method is to collect the reference data from steady state and add the test data from the latest phase forward. This methed make effective use of the latest sample information. The reference data is combined with the test data to calculate the depth value of each data, and the Wilcoxon rank-sum statistic is used to construct the nonparametric control chart. This study compares the four depth functions of Simplicial Depth, Tukey Depth, Spatial Depth, and Projection Depth on the NP-DDC control chart. The simulation results show that the NP-DDC control chart constructed with Projection depth is superior to other depth functions in monitoring the dispersion, and has better monitoring ability than the CPM-Mood if the scale changes slightly. However, the NP-DDC control chart is less sensitive to the monitoring of the location compared with the EWMA chart proposed by Zhou et al. and the CUSUM chart proposed by Wang et al.

    摘要 I 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 研究假設 4 1.5 論文架構 4 第二章 文獻探討 6 2.1 資料深度(Data Depth) 6 2.1.1 Tukey Depth 7 2.1.2 Simplicial Depth 8 2.1.3 Projection Depth 9 2.1.4 Spatial Depth 9 2.2 無母數管制圖(Nonparametric Control Chart) 10 2.1.1 Shewhart-type無母數 Charts 11 2.2.2 EWMA-type無母數 Chart 12 2.2.3 CUSUM-type無母數 Chart 14 2.2.4 CPM-Mood無母數 Chart 16 2.3 資料深度無母數統計量(Liu and Singh tests) 16 2.4 衡量管制圖監測能力的績效指標 18 2.5 小結 18 第三章 研究方法與步驟 20 3.1 研究假設與符號設定 20 3.2 管制圖統計量之建構 22 3.2.1 管制圖統計量之樣本選取:由最新一期往前加入樣本 22 3.2.2 各資料深度之計算方式 24 3.2.3 將深度值進行排序計算Wilcoxon rank-sum統計量 26 3.2.4 NP-DDC管制圖之各期標準化統計量計算公式 27 3.2.5 設定管制界線 27 3.3 蒙地卡羅模擬流程 29 3.4 小結 31 第四章 模擬結果與分析 32 4.1 NP-DDC管制圖模擬之環境與管制界限之設定 32 4.1.1 樣本分配設定 32 4.1.2 樣本大小設定 33 4.1.3 不同資料深度設定 33 4.1.4 管制界限設定與找尋 33 4.2 NP-DDC 管制圖之尺度變動之績效比較 35 4.2.1 不同深度函數在NP-DDC管制圖之績效比較 35 4.2.2 NP-DDC管制圖與CPM-Mood管制圖之績效比較 39 4.3 NP-DDC管制圖之位置位移之績效比較 43 4.4 ARL0與型一誤差α之對應關係 47 4.5 結論與分析 54 第五章 結論與研究貢獻 55 5.1 結論 55 5.2 研究貢獻 56 參考文獻 57 中文文獻: 57 英文文獻: 57

    中文文獻:
    鄭旻紘,應用無母數統計方法於建構資訊理論管制圖用於製程監控,國立
    成功大學工業與資訊管理研究所碩士論文,民國一百零七年七月。
    楊瑋欣,應用幾何分佈於監控努力過程之資訊理論管制圖,國立成功大學
    工業與資訊管理研究所碩士論文,民國一百零五年六月。
    英文文獻:
    Alloway Jr, J. A., & Raghavachari, M. (1991). Control chart
    based on the Hodges-Lehmann estimator. Journal of
    Quality Technology, 23(4), 336-347.
    Amin, R. W., & Searcy, A. J. (1991). A nonparametric
    exponentially weighted moving average control scheme.
    Communications in Statistics-Simulation and Computation
    , 20(4), 1049-1072.
    Amin, R. W., Reynolds Jr, M. R., & Saad, B. (1995). Nonparametric quality control charts based on the sign
    statistic. Communications in Statistics-Theory and
    Methods, 24(6), 1597-1623.
    Bakir, S. T., & Reynolds, M. R. (1979). A nonparametric
    procedure for process control based on within-group
    ranking. Technometrics, 21(2), 175-183.
    Bellera, C. A., Julien, M., & Hanley, J. A. (2010). Normal
    approximations to the distributions of the Wilcoxon
    statistics: accurate to what N? Graphical insights.
    Journal of Statistics Education, 18(2).
    Brown, B. and Hettmansperger, T. (1989). The affine invariant
    bivariate version of the sign test. Journal of the
    Royal Statistal Society B, 51, 117-125.
    Chakraborti, S., Van der Laan, P., & Bakir, S. T. (2001).
    Nonparametric control charts: an overview and some
    results. Journal of Quality Technology, 33(3), 304-315.
    Chatterjee, S., & Qiu, P. (2009). Distribution-free
    cumulative sum control charts using bootstrap-based
    control limits. The Annals of Applied Statistics, 3(1),
    349-369.
    Christmann, A. (2002). Classification based on the SVM and
    on regression depth. In Dodge, Y. (editores),
    Statistical data analysis based on the L1 norm and
    related methods, Basel: Birkh¨ Ouser, 341-352.
    Chenouri, S., Small, C. G., & Farrar, T. J. (2011). Data
    depth‐based nonparametric scale tests. Canadian Journal
    of Statistics, 39(2), 356-369.
    Donoho, D. L., & Gasko, M. (1992). Breakdown properties of
    location estimates based on halfspace depth and
    projected outlyingness. The Annals of Statistics,
    20(4), 1803-1827.
    Donoho, D. L. (1982). Breakdown properties of multivariate
    location estimators. Ph.D. qualifying paper, Dept.
    Statistics, Harvard Univ.
    Eto, M. R. The concept of depth in statistics. Tech. Rep.
    (cited on page 31).
    Fraiman, R., Liu, R. Y., & Meloche, J. (1997). Multivariate
    density estimation by probing depth. Lecture Notes-
    Monograph Series, 415-430.
    Graham, M. A., Chakraborti, S., & Human, S. W. (2011). A
    nonparametric EWMA sign chart for location based on
    individual measurements. Quality Engineering, 23(3),
    227-241.
    Hackl, P., & Ledolter, J. (1991). A control chart based on
    ranks. Journal of Quality Technology, 23(2), 117-124.
    Hawkins, D. M., Qiu, P., & Kang, C. W. (2003). The
    changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355-366.
    Hettmansperger, T. (1984). Statistical inference based on
    ranks. Wiley, New York.
    Hettmansperger, T., Nyblom, J. and Oja, H. (1992). On
    multivariate notions of sign and rank. In Dodge, Y.
    (editores), L-1 Statistics and Related Methods.
    Amsterdam: Elsevier , 267-278.
    Hettmansperger, T. and Oja, H. (1994). Affine invariant
    multivariate multisample sign tests. Journal of the
    Royal Statistal Society B, 56, 235-249.
    Jörnsten, R. (2004). Clustering and classification based on
    the L1 data depth. Journal of Multivariate Analysis,
    90, 67-89.
    Kvam, P. H., & Vidakovic, B. (2007). Nonparametric
    statistics with applications to science and engineering
    (Vol. 653). John Wiley & Sons.
    Li, S. Y., Tang, L. C., & Ng, S. H. (2010). Nonparametric
    CUSUM and EWMA control charts for detecting mean
    shifts. Journal of Quality Technology, 42(2), 209-226.
    Liu, R. Y. (1990). On a notion of data depth based on
    random simplices. The Annals of Statistics, 405-414.
    Liu, R., Parelius, J. M. and Singh, K. (1999). Multivariate
    analysis by data depth descriptive statistics, graphics
    and inference. Annals of Statistics, 27, 783-858.
    Liu, R. Y. (1992). Data depth and multivariate rank tests.
    L1-statistical analysis and related methods, 279-294.
    Liu, R., & Singh, K. (2003). Rank tests for comparing
    multivariate scale using data depth: Testing for
    expansion or contraction. Unpublished Manuscript.
    Liu, R. Y. (1995). Control charts for multivariate
    processes. Journal of the American Statistical
    Association, 90(432), 1380-1387.
    McDonald, D. (1990). A CUSUM procedure based on sequential
    ranks. Naval Research Logistics (NRL), 37(5), 627-646.
    Mood, A. M. (1954). On the asymptotic efficiency of certain
    nonparametric two-sample tests. The Annals of
    Mathematical Statistics, 25(3), 514-522.
    Li, J., & Liu, R. Y. (2004). New nonparametric tests of
    multivariate locations and scales using data depth.
    Statistical Science, 686-696.
    Orban, J., & Wolfe, D. A. (1982). A class of distribution-
    free two-sample tests based on placements. Journal of
    the American Statistical Association, 77(379), 666-672.
    Pappanastos, E. A., & Adams, B. M. (1996). Alternative
    designs of the Hodges-Lehmann control chart. Journal of
    Quality Technology, 28(2), 213-223.
    Park, C., Park, C., Reynolds Jr, M. R., & Reynolds Jr, M.
    R. (1987). Nonparametric procedures for monitoring a
    location parameter based on linear placement
    statistics. Sequential Analysis, 6(4), 303-323.
    Rousseeuw, P. J., & Hubert, M. (1999). Regression depth.
    Journal of the American Statistical Association,
    94(446), 388-402.
    Ruts, I. and Rousseeuw, P. (1996). Computing depth contours
    of bivariate point clouds. Computational Statistics and
    Data Analysis, 23, 153-168.
    Ross, G. J., Tasoulis, D. K., & Adams, N. M. (2011).
    Nonparametric monitoring of data streams for changes in
    location and scale. Technometrics, 53(4), 379-389.
    Serfling, R. (2002). A depth function and a scale curve
    based on spatial quantiles. In Statistical Data
    Analysis Based on the L1-Norm and Related Methods (pp.
    25-38). Birkhäuser, Basel.
    Serfling, R. (2004). Nonparametric multivariate descriptive
    measures based on spatial quantiles. Journal of
    Statistical Planning and Inference, 123, 259-278.
    Serfling, R. (2006). Depth functions in nonparametric
    multivariate inference. DIMACS
    Series in Discrete Mathematics and Theoretical Computer
    Science, 72, 1-16.
    Shewhart, W. A. (1931). Economic control of quality of
    manufactured product. ASQ Quality Press.
    Small, C. G. (1990). A survey of multidimensional medians.
    International Statistical Review/Revue Internationale
    de Statistique, 263-277.
    Stahel, W. A. (1981). Breakdown of covariance estimators.
    Research Report 31, Fachgruppe für Statistik, ETH,
    Zürich.
    Tukey, J.(1975). Mathematics and the picturing of data.
    Proceedings of the International Congress of
    Mathematics, 2,Vancouver, 523-531.
    Wang, J. and Serfling, R. (2005). Nonparametric multivariate
    kurtosis and tailweight measures. Journal of
    Nonparametric Statistics, 17, 441-456 .
    Wang, D., Zhang, L., & Xiong, Q. (2017). A non parametric
    CUSUM control chart based on the Mann–Whitney
    statistic. Communications in Statistics-Theory and
    Methods, 46(10), 4713-4725
    Wilcoxon, F. (1945). Individual comparisons by ranking
    methods. Biometrics Bulletin, 1(6), 80-83.
    Woodall, W. H. (2000). Controversies and contradictions in
    statistical process control. Journal of Quality
    Technology, 32(4), 341-350.
    Woodall, W. H., & Montgomery, D. C. (1999). Research issues
    and ideas in statistical process control. Journal of
    Quality Technology, 31(4), 376-386.
    Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new
    nonparametric EWMA sign control chart. Expert Systems
    with Applications, 38(5), 6239-6243.
    Yashchin, E. (1992). Analysis of CUSUM and other Markov-
    type control schemes by using empirical distributions.
    Technometrics, 34(1), 54-63.
    Zhang, J. (2002). Some extensions of Tukey’s depth
    function. Journal of Multivariate Analysis, 82, 134-
    165.
    Zhou, C., Zou, C., Zhang, Y., & Wang, Z. (2009).
    Nonparametric control chart based on change-point
    model. Statistical Papers, 50(1), 13-28.
    Zuo, Y., & Serfling, R. (2000). General notions of
    statistical depth function. Annals of Statistics, 461-
    482.

    下載圖示 校內:2024-06-24公開
    校外:2024-06-24公開
    QR CODE