簡易檢索 / 詳目顯示

研究生: 李昱萱
Lee, Yu-Shuan
論文名稱: 利用體內體外試驗進行食品加工汙染物縮水甘油誘導之 DNA 損傷和粒線體自噬作用導致腎毒性機轉研究
Food processing contaminant glycidol-induced renal toxicity via DNA damage and mitophagy in vivo and in vitro
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 79
中文關鍵詞: 縮水甘油腎毒性DNA 損傷粒線體功能失調程序性細胞死亡
外文關鍵詞: glycidol, renal toxicity, DNA damage, mitochondrial dysfunction, programmed cell death
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 縮水甘油 (Glycidol) 是在植物油精製的除臭過程中產生的污染物。已知 Glycidol具有基因毒性會誘導 DNA 損傷,目前被 IARC 歸類為 2A 級致癌物。在本研究室先前進行的體內試驗觀察到 Glycidol 會造成小鼠的腎小管細胞退化,並在體外試驗發現Glycidol 會誘導 NRK-52E 大鼠腎小管上皮細胞進行程序性細胞死亡,包含自噬作用(Autophagy)、細胞焦亡 (Pyroptosis)、鐵依賴性死亡 (Ferroptosis) 和壞死性凋亡(Necroptosis),但Glycidol 誘導 DNA 損傷與腎毒性的機制目前還不清楚。本研究的目的是進行體內及體外試驗,探討 Glycidol 誘導 DNA 損傷和粒線體自噬作用導致腎毒性的機制。本研究使用 C57BL/6 小鼠經口給予 Glycidol (1、5、10、15、20、25、50 mg/kg) 進行 28 天亞急毒性試驗,檢測血清和尿液中的肝臟及腎臟損傷指標,並收取腎臟和 其他器官從組織病理學評估損傷程度,以及由尿液代謝體學分析和腸道菌次世代定序 來推測可能的路徑。於回復性試驗使用 MIOX 基因轉殖小鼠,以第一型馬兜鈴酸 (Aristolochic acid I) 作為陽性控制組和 Glycidol (25、50、100 mg/kg) 連續 28 天後停止暴露,繼續放置 28 天後犧牲,於實驗期間每週測定尿液中腎臟損傷指標和冷光蛋白表現量,以即時觀察Glycidol 造成的腎臟損傷是否於停止暴露後可回復,並於犧牲後從組織病理學評估腎臟損傷程度及由尿液代謝體學分析路徑變化。此外,本研究使用 NRK-52E 細胞探討其腎毒性機制,使用微核和彗星試驗測定其基因毒性,並檢測細胞週期停滯區間、粒線體功能和動態平衡及程序性細胞死亡路徑。在體內試驗方面,從 28 天亞急毒性試驗觀察到 Glycidol 於每日餵食 10 mg/kg 的劑量即可對腎臟造成損傷,在回復性試驗中則發現 Glycidol 造成的腎臟損傷於停止暴露後具有部分回復性。在體外試驗方面,我們證實 Glycidol 具有基因毒性造成 DNA 受損,提升 γ-H2AX 和p-ATM 表現,進而抑制 CDK1/Cyclin B 表達使細胞週期停滯於 G2/M 期,並且藉由Drp1 表達上升、Mfn1 表達下降使粒線體動態失衡趨向於分裂狀態,伴隨著 ROS 增加、膜電位下降,最終走向粒線體自體吞噬、細胞焦亡之程序性細胞死亡。

    In this research, we focused on the genotoxicity and renal toxicity induced by glycidol in 28-day repeated dose exposure, the reversibility, and the underlying mechanisms leading to kidney injury. We used C57BL/6 mice in a 28-day sub-acute toxicity study, analyzing the biochemistry values of liver and renal function, and evaluating the degree of kidney injury from histopathology. In the reversibility study, MIOX gene transgenic mice were used. We collected the urine and analyzed the biochemistry values of renal function and nanoLuc luciferase expression every week to monitor the reversibility of glycidol. In addition, we used NRK-52E as the cell model to investigate the mechanisms of DNA damage, cell cycle arrest, mitochondrial dysfunction, and programmed cell death induced by glycidol. In the
    present study, we observed that exposure to 10 mg/kg glycidol for 28 days could induce kidney injury. However, the injury could be reversed after stopping exposure. We revealed that the renal toxicity may be initiated from the sensing of γ-H2AX and p-ATM to the DNA damage, subsequently inhibited CDK1/cyclin B expression and arrested cell cycle in the G2/M phase. The mitochondrial dynamics were imbalanced due to the up-regulation of Drp1 and down-regulation of Mfn1, accompanied by ROS production and decreased mitochondrial membrane potential. Eventually, glycidol induced programmed cell death including mitophagy and pyroptosis, leading to renal toxicity.

    摘要 i 誌謝 v 目錄 vi 圖目錄 viii 第一章、前言 1 第一節、縮水甘油 (Glycidol) 1 (1) 縮水甘油酯 (Glycidyl esters) 及縮水甘油 (Glycidol) 1 (2) 代謝 2 (3) 毒性 3 (4) 目前法規 4 第二節、DNA 損傷與細胞週期停滯 (DNA damage and cell cycle arrest) 5 第三節、粒線體的分裂-融合動態 (Mitochondrial fission-fusion dynamics) 6 第四節、程序性細胞死亡 (Programmed cell death) 8 (1) 粒線體自噬作用 (Mitophagy) 8 (2) 細胞焦亡 (Pyroptosis) 9 (3) 細胞凋亡 (Apoptosis) 10 第五節、神農鼠 (MIOX gene transgenic mice) 11 第二章、研究目的 12 第三章、研究架構 13 第一節、28 天亞急毒性試驗 (In vivo 28-day sub-acute toxicity study) 13 第二節、神農鼠腎臟損傷回復性試驗 (In vivo reversibility study) 14 第三節、細胞機轉研究 (In vitro mechanism study) 14 第四章、材料與方法 16 第一節、研究材料 16 一、動物模式及細胞株 16 二、儀器及器材 16 三、耗材及試劑 17 第二節、研究方法及步驟 20 一、動物實驗 20 二、細胞實驗 24 三、統計分析 30 第五章、研究結果 31 第一節、Glycidol 的 28 天亞急毒性試驗 31 第二節、Glycidol 的回復性試驗 32 第三節、Glycidol 誘導 CHO-K1 細胞和 NRK-52E 細胞 DNA 損傷 33 第四節、Glycidol 誘導 NRK-52E 細胞之細胞週期停滯於 G2/M 期 34 第五節、Glycidol 誘導 NRK-52E 細胞粒線體功能異常 34 第六節、Glycidol 誘導 NRK-52E 細胞進行非 PINK1/Parkin 依賴型粒線體自噬作用 (Mitophagy) 35 第七節、Glycidol 誘導 NRK-52E 細胞進行細胞焦亡 (Pyroptosis) 36 第六章、討論 38 第七章、結論及建議 44 第八章、參考文獻 45 圖 53

    Aasa J, Vare D, Motwani HV, Jenssen D, Tornqvist M. 2016. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions. Mutat Res Genet Toxicol Environ Mutagen 805:38-45.
    Aasa J, Abramsson-Zetterberg L, Carlsson H, Törnqvist M. 2017. The genotoxic potency of glycidol established from micronucleus frequency and hemoglobin adduct levels in mice. Food Chem Toxicol 100:168-174.
    Albers E. 2009. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′‐methylthioadenosine. IUBMB life 61:1132-1142.
    Aniolowska M, Kita A. 2016. Monitoring of glycidyl fatty acid esters in refined vegetable oils from retail outlets by lc-ms. J Sci Food Agric 96:4056-4061.
    Appel KE, Abraham K, Berger-Preiss E, Hansen T, Apel E, Schuchardt S, et al. 2013. Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Arch Toxicol 87:1649-1659.
    Bakhiya N, Abraham K, Gurtler R, Appel KE, Lampen A. 2011. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol Nutr Food Res 55:509-521.
    Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, Zhang Z, et al. 2017. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol 216:3231-3247.
    Canaud G, Bonventre JV. 2015. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrology Dialysis Transplantation 30:575-583.
    Castro-Portuguez R, Sutphin GL. 2020. Kynurenine pathway, nad+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 132:110841.
    Cheng W-w, Liu G-q, Wang L-q, Liu Z-s. 2017. Glycidyl fatty acid esters in refined edible oils: A review on formation, occurrence, analysis, and elimination methods. Comprehensive Reviews in Food Science and Food Safety 16:263-281.
    Chiou Y-Y, Jiang S-T, Ding Y-S, Cheng Y-H. 2020. Kidney-based in vivo model for drug-induced nephrotoxicity testing. Sci Rep 10:1-12.
    Coca SG, Singanamala S, Parikh CR. 2012. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int 81:442-448.
    Collins PL, Purman C, Porter SI, Nganga V, Saini A, Hayer KE, et al. 2020. DNA double-strand breaks induce h2ax phosphorylation domains in a contact-dependent manner. Nat Commun 11:3158.
    Dan X, Babbar M, Moore A, Wechter N, Tian J, Mohanty JG, et al. 2020. DNA damage invokes mitophagy through a pathway involving spata18. Nucleic Acids Res 48:6611-6623.
    De Biasi S, Gibellini L, Cossarizza A. 2015. Uncompensated polychromatic analysis of mitochondrial membrane potential using jc-1 and multilaser excitation. Curr Protoc Cytom 72:7 32 31-37 32 11.
    De Chiara L, Conte C, Antonelli G, Lazzeri E. 2021. Tubular cell cycle response upon aki: Revising old and new paradigms to identify novel targets for ckd prevention. Int J Mol Sci 22:11093.
    Deng F, Sharma I, Dai Y, Yang M, Kanwar YS. 2019. Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Invest 129:5033-5049.
    Destaillats F, Craft BD, Dubois M, Nagy K. 2012. Glycidyl esters in refined palm (elaeis guineensis) oil and related fractions. Part i: Formation mechanism. Food Chem 131:1391-1398.
    Ding W-X, Yin X-M. 2012. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547-564.
    EFSA. 2016. Risks for human health related to the presence of 3‐ and 2‐monochloropropanediol (mcpd), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal 14:4426-4584.
    EFSA. 2020. Commission regulation (eu) 2020/1322 of 23 september 2020 amending regulation (ec) no 1881/2006 as regards maximum levels of 3‐monochloropropanediol (3-mcpd), 3-mcpd fatty acid esters and glycidyl fatty acid esters in certain foods. Official Journal of the European Union:2-4.
    El Ramy R, Elhkim MO, Lezmi S, Poul J. 2007. Evaluation of the genotoxic potential of 3-monochloropropane-1, 2-diol (3-mcpd) and its metabolites, glycidol and β-chlorolactic acid, using the single cell gel/comet assay. Food Chem Toxicol 45:41-48.
    England CG, Ehlerding EB, Cai W. 2016. Nanoluc: A small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27:1175-1187.
    Furuhashi M. 2020. New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. American Journal of Physiology-Endocrinology and Metabolism 319:E827-E834.
    Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T, et al. 2018. Downregulation of gsdmd attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of egfr/akt signaling and predicts a good prognosis in non‑small cell lung cancer. Oncol Rep 40:1971-1984.
    Garcia-Canton C, Anadón A, Meredith C. 2012. Γh2ax as a novel endpoint to detect DNA damage: Applications for the assessment of the in vitro genotoxicity of cigarette smoke. Toxicol In Vitro 26:1075-1086.
    Gkikas I, Palikaras K, Tavernarakis N. 2018. The role of mitophagy in innate immunity. Front Immunol 9:1283.
    Goh KM, Wong YH, Tan CP, Nyam KL. 2021. A summary of 2-, 3-mcpd esters and glycidyl ester occurrence during frying and baking processes. Curr Res Food Sci 4:460-469.
    Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. 2019. Comparison of the adhesion and endocytosis of calcium oxalate dihydrate to hk-2 cells before and after repair by astragalus polysaccharide. Sci Technol Adv Mater 20:1164-1177.
    Ho HJ, Kikuchi K, Oikawa D, Watanabe S, Kanemitsu Y, Saigusa D, et al. 2021. Sglt‐1‐specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenine‐induced renal failure. Physiological reports 9:e15092.
    Huang Y, Xin W, Xiong J, Yao M, Zhang B, Zhao J. 2022. The intestinal microbiota and metabolites in the gut-kidney-heart axis of chronic kidney disease. Front Pharmacol:734.
    Hwa Yun B, Guo J, Bellamri M, Turesky RJ. 2020. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom Rev 39:55-82.
    IARC. 2000. Glycidol. IARC MONOGRAPHS 77.
    Ichim G, Tait SW. 2016. A fate worse than death: Apoptosis as an oncogenic process. Nature Reviews Cancer 16:539-548.
    Ikeda N, Fujii K, Sarada M, Saito H, Kawabata M, Naruse K, et al. 2012. Genotoxicity studies of glycidol fatty acid ester (glycidol linoleate) and glycidol. Food Chem Toxicol 50:3927-3933.
    Irwin RD, Eustis SL, Stefanski S, Haseman JK. 1996. Carcinogenicity of glycidol in f344 rats and b6c3f1 mice. J Appl Toxicol 16:201-209.
    JECFA. 2018. Safety evaluation of certain contaminants in food.
    Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa‐Shah P, Andrabi SA, et al. 2014. Parkin‐independent mitophagy requires d rp1 and maintains the integrity of mammalian heart and brain. The EMBO journal 33:2798-2813.
    Krupina K, Goginashvili A, Cleveland DW. 2021. Causes and consequences of micronuclei. Curr Opin Cell Biol 70:91-99.
    Kuhlmann J. 2011. Determination of bound 2, 3‐epoxy‐1‐propanol (glycidol) and bound monochloropropanediol (mcpd) in refined oils. European Journal of Lipid Science and Technology 113:335-344.
    Langie SA, Azqueta A, Collins AR. 2015. The comet assay: Past, present, and future. Vol. 6:Frontiers Media SA, 266-268.
    Lee Y, Lee H-Y, Hanna RA, Gustafsson ÅB. 2011. Mitochondrial autophagy by bnip3 involves drp1-mediated mitochondrial fission and recruitment of parkin in cardiac myocytes. American journal of physiology-heart and circulatory physiology 301:H1924-H1931.
    Li J, Chang X, Shang M, Niu S, Zhang W, Li Y, et al. 2021. The crosstalk between drp1-dependent mitochondrial fission and oxidative stress trigger hepatocyte apoptosis induced by silver nanoparticles. Nanoscale:12356-12369.
    Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L, et al. 2020. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discovery 6:80-93.
    Lim JH, Kim EN, Kim MY, Chung S, Shin SJ, Kim HW, et al. 2012. Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012:171383-171392.
    Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. 2021. Repair of hypoxanthine in DNA revealed by DNA glycosylases and endonucleases from hyperthermophilic archaea. Front Microbiol 12:736915-736922.
    Liu P-W, Li C-I, Huang K-C, Liu C-S, Chen H-L, Lee C-C, et al. 2021. 3-mcpd and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via nlrp3 inflammasome activation, necroptosis, and autophagic cell death. J Hazard Mater 405:124241.
    Lopez-Mejia IC, Fajas L. 2015. Cell cycle regulation of mitochondrial function. Curr Opin Cell Biol 33:19-25.
    Lopez J, Tait S. 2015. Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer 112:957-962.
    Lucas-Torres C, Perez A, Cabanas B, Moreno A. 2014. Study by (3)(1)p nmr spectroscopy of the triacylglycerol degradation processes in olive oil with different heat-transfer mechanisms. Food Chem 165:21-28.
    Łukasik P, Załuski M, Gutowska I. 2021. Cyclin-dependent kinases (cdk) and their role in diseases development–review. Int J Mol Sci 22:2935.
    Matthäus B, Pudel F, Fehling P, Vosmann K, Freudenstein A. 2011. Strategies for the reduction of 3-mcpd esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology 113:380-386.
    Milligan J, Aguilera J, Ly A, Tran N, Hoang O, Ward J. 2003. Repair of oxidative DNA damage by amino acids. Nucleic Acids Res 31:6258-6263.
    Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. 2019. An integrated transport mechanism of the maltose abc importer. Res Microbiol 170:321-337.
    Moe A, Ringvoll J, Nordstrand LM, Eide L, Bjørås M, Seeberg E, et al. 2003. Incision at hypoxanthine residues in DNA by a mammalian homologue of the escherichia coli antimutator enzyme endonuclease v. Nucleic Acids Res 31:3893-3900.
    Moonen L, D’Haese PC, Vervaet BA. 2018. Epithelial cell cycle behaviour in the injured kidney. Int J Mol Sci 19:2038.
    Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, et al. 2015. Bcl-2-like protein 13 is a mammalian atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nature communications 6:1-14.
    NTP. 1990. Toxicology and carcinogenesis studies of glycidol in f344/n rats and b6c3f1 mice (gavage studies). In: Ntp technical report no 374; nih publ no 90-2829.
    Ozcagli E, Alpertunga B, Fenga C, Berktas M, Tsitsimpikou C, Wilks MF, et al. 2016. Effects of 3-monochloropropane-1,2-diol (3-mcpd) and its metabolites on DNA damage and repair under in vitro conditions. Food Chem Toxicol 89:1-7.
    Panagopoulos A, Altmeyer M. 2021. The hammer and the dance of cell cycle control. Trends Biochem Sci 46:301-314.
    Panda SK, Ray S, Nayak SR, Behera S, Bhanja SS, Acharya V. 2019. A review on cell cycle checkpoints in relation to cancer.88-95.
    Pang B, McFaline JL, Burgis NE, Dong M, Taghizadeh K, Sullivan MR, et al. 2012. Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and rna. Proceedings of the National Academy of Sciences 109:2319-2324.
    Perry HM, Huang L, Wilson RJ, Bajwa A, Sesaki H, Yan Z, et al. 2018. Dynamin-related protein 1 deficiency promotes recovery from aki. J Am Soc Nephrol 29:194-206.
    Petsalaki E, Zachos G. 2020. DNA damage response proteins regulating mitotic cell division: Double agents preserving genome stability. FEBS J 287:1700-1721.
    Pietkiewicz S, Schmidt JH, Lavrik IN. 2015. Quantification of apoptosis and necroptosis at the single cell level by a combination of imaging flow cytometry with classical annexin v/propidium iodide staining. J Immunol Methods 423:99-103.
    Reagan-Shaw S, Nihal M, Ahmad N. 2008. Dose translation from animal to human studies revisited. FASEB J 22:659-661.
    Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. The Journal of cell biology 146:905-916.
    Rogov AG, Goleva TN, Epremyan KK, Kireev, II, Zvyagilskaya RA. 2021. Propagation of mitochondria-derived reactive oxygen species within the dipodascus magnusii cells. Antioxidants (Basel) 10:120.
    Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E. 2015. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrology Dialysis Transplantation 30:924-933.
    Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, et al. 2013. Aim2 and nlrp3 inflammasomes activate both apoptotic and pyroptotic death pathways via asc. Cell Death Differ 20:1149-1160.
    Salazar-Roa M, Malumbres M. 2017. Fueling the cell division cycle. Trends Cell Biol 27:69-81.
    Senyildiz M, Alpertunga B, Ozden S. 2017. DNA methylation analysis in rat kidney epithelial cells exposed to 3-mcpd and glycidol. Drug Chem Toxicol 40:432-439.
    Sharma I, Deng F, Liao Y, Kanwar YS. 2020. Myo-inositol oxygenase (miox) overexpression drives the progression of renal tubulointerstitial injury in diabetes. Diabetes 69:1248-1263.
    Shi J, Gao W, Shao F. 2017. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245-254.
    Shimamura Y, Inagaki R, Honda H, Masuda S. 2020. Does external exposure of glycidol-related chemicals influence the forming of the hemoglobin adduct, n-(2,3-dihydroxypropyl)valine, as a biomarker of internal exposure to glycidol? Toxics 8.
    Shimizu M, Vosmann K, Matthäus B. 2012. Generation of 3-monochloro-1,2-propanediol and related materials from tri-, di-, and monoolein at deodorization temperature. European Journal of Lipid Science and Technology 114:1268-1273.
    Sone M, Toyoda T, Cho YM, Akagi Ji, Matsushita K, Mizuta Y, et al. 2019. Immunohistochemistry of γ‐h2ax as a method of early detection of urinary bladder carcinogenicity in mice. J Appl Toxicol 39:868-876.
    Song M, Gong G, Burelle Y, Gustafsson ÅB, Kitsis RN, Matkovich SJ, et al. 2015. Interdependence of parkin-mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res 117:346-351.
    Spurlock B, Tullet J, Hartman IV J, Mitra K. 2020. Interplay of mitochondrial fission-fusion with cell cycle regulation: Possible impacts on stem cell and organismal aging. Exp Gerontol 135:110919.
    Spurlock B, Parker D, Basu MK, Hjelmeland A, Sajina G, Liu S, et al. 2021. Fine-tuned repression of drp1-driven mitochondrial fission primes a ‘stem/progenitor-like state’to support neoplastic transformation. Elife 10:e68394.
    Sun W, Zeng C, Liu S, Fu J, Hu L, Shi Z, et al. 2018. Ageratina adenophora induces mice hepatotoxicity via ros-nlrp3-mediated pyroptosis. Sci Rep 8:1-8.
    Sung P-H, Chang C-L, Tsai T-H, Chang L-T, Leu S, Chen Y-L, et al. 2013. Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Res Ther 4:1-20.
    Swanson KV, Deng M, Ting JP-Y. 2019. The nlrp3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology 19:477-489.
    Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. 2007. Mitotic phosphorylation of dynamin-related gtpase drp1 participates in mitochondrial fission. J Biol Chem 282:11521-11529.
    Tanaka A, Cleland MM, Xu S, Narendra DP, Suen D-F, Karbowski M, et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by parkin. J Cell Biol 191:1367-1380.
    Teng J-F, Mei Q-B, Zhou X-G, Tang Y, Xiong R, Qiu W-Q, et al. 2020. Polyphyllin vi induces caspase-1-mediated pyroptosis via the induction of ros/nf-κb/nlrp3/gsdmd signal axis in non-small cell lung cancer. Cancers (Basel) 12:193.
    Tong M, Zablocki D, Sadoshima J. 2020. The role of drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 142:138-145.
    Wada K, Yoshida T, Takahashi N, Matsumoto K. 2014. Effects of seven chemicals on DNA damage in the rat urinary bladder: A comet assay study. Mutat Res Genet Toxicol Environ Mutagen 769:1-6.
    Wai T, Langer T. 2016. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105-117.
    Washington IM, Van Hoosier G. 2012. Clinical biochemistry and hematology. In: The laboratory rabbit, guinea pig, hamster, and other rodents:Elsevier, 57-116.
    Weißhaar R, Perz R. 2010. Fatty acid esters of glycidol in refined fats and oils. European Journal of Lipid Science and Technology 112:158-165.
    Wu D, Wang S, Yu G, Chen X. 2021. Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy. Angewandte Chemie 133:8096-8112.
    Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, et al. 2016. Fundc 1 regulates mitochondrial dynamics at the er–mitochondrial contact site under hypoxic conditions. The EMBO journal 35:1368-1384.
    Yamashita S-i, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, et al. 2016. Mitochondrial division occurs concurrently with autophagosome formation but independently of drp1 during mitophagy. J Cell Biol 215:649-665.
    Yan M, Tang C, Ma Z, Huang S, Dong Z. 2016. DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol 313:104-108.
    Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. 2010. Epithelial cell cycle arrest in g2/m mediates kidney fibrosis after injury. Nat Med 16:535-543.
    Youn DH, Kim Y, Kim BJ, Jeong MS, Lee J, Rhim JK, et al. 2021. Mitochondrial dysfunction associated with autophagy and mitophagy in cerebrospinal fluid cells of patients with delayed cerebral ischemia following subarachnoid hemorrhage. Sci Rep 11:1-10.
    Yu SM, Bonventre JV. 2020. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr Opin Nephrol Hypertens 29:310-318.
    Zachari M, Ktistakis NT. 2020. Mammalian mitophagosome formation: A focus on the early signals and steps. Frontiers in cell and developmental biology 8:171.
    Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, et al. 2020. Nlrp3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox biology 34:101523.
    Zhang L, Ding F, Wang R, Wu X, Wan Y, Hu J, et al. 2021. Involvement of mitochondrial fission in renal tubular pyroptosis in mice exposed to high and environmental levels of glyphosate combined with hard water. Environmental Pollution 283:117082.
    Zhou W, Yao Y, Scott AJ, Wilder-Romans K, Dresser JJ, Werner CK, et al. 2020. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature communications 11:1-14.

    下載圖示 校內:2025-09-20公開
    校外:2025-09-20公開
    QR CODE