簡易檢索 / 詳目顯示

研究生: 楊南盈
Yang, Nan-Ying
論文名稱: 以液相氧化法應用於磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層之研究
Liquid Phase Oxidation on GaAs for the Application to InGaP/GaAs HBTs Passivation
指導教授: 洪茂峰
Houng, Mau-Phon
施博文
Sze, Po-Wen
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 69
中文關鍵詞: 液相氧化法異質接面雙極性電晶體硫化
外文關鍵詞: HBTs, Liquid Phase Oxidation, Sulfur
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本文中,我們研究與探討將液相氧化法應用在磷化銦鎵/砷化鎵異質接面雙極性電晶體上。相較於其他的氧化法,此氧化法的系統是一種相當簡單且容易操作並在低溫上(從30℃到70℃)成長出一層表面均勻的氧化層,且該氧化法亦不需要外加任何的能量輔助。另外,我們也針對此氧化層做物理性及化學性的探討,藉由掃描式電子顯微鏡及原子力顯微鏡的分析得知其表面的粗糙度相當均勻,再經由X光光譜及歐傑電子光譜的縱深分析得知此氧化物的成份含有三氧化二鎵及三氧化二砷,之後再將其應用在異質接面雙極性電晶體鈍化層上並探討直流特性之關係。基於此表面氧化法之鈍化層的使用,在較低的基極-射極偏壓中可以有效的壓制基極的電流,即表示能提高直流電流增益,且在低集極電流區域可獲得7倍的增加。另外,在逆向基極-集極的崩潰電壓(23.5伏特)及在較低的基極-射極偏壓中所獲得的基極電流(2×10-12安培)都有明顯的改善。
      另一方面,我們加入硫化鈍化層的方式和液相氧化法做一比對。在我們的研究中可觀察到氧化法鈍化層有一最高的崩潰電壓且可操作在較寬廣的集極電流區(從8.3×10-11到0.1 安培),並且達到十倍的改善(從8.1×10-10到8.3×10-11安培),可提供使用者在低功率電子電路上的應用。

      Liquid phase oxidation (LPO) method to grow native oxide films on InGaP/GaAs HBTs near room temperature is investigated and characterized. This is a very simple, low-cost and low-temperature (30-70oC) technique to grow uniform and smooth native oxide films. In the liquid phase oxidation system, neither anodic equipment nor assisting energy source is needed. Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to analyze the surfaces of the grown oxide films. Moreover, from the chemical analysis of x-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES), the oxide films are found to be a composite of the Ga2O3 and As2O3. Since the passivation on the GaAs surface is one of the key issues in III-V materials to reduce the density of surface states, leading to the reduction of the surface recombination velocity and improvement of the device performance, therefore, the implementation of LPO as the surface passivation to improve the InGaP/GaAs heterojunction bipolar transistors (HBTs) performance is also demonstrated. In this work, the current gain of the HBT devices with a native oxide film as the surface passivation increase 7 fold in low collector current regimes. In addition, a larger reverse-bias base-collector breakdown voltage, 23.5 V, and a lower base recombination current, 2×10-12 A, are also obtained.
    Furthermore, sulfur solutions are used to compare with the LPO method. It was found that the device with an oxide passivation exhibits the highest breakdown voltage. Additionally, the device with a surface passivation shows wider collector regimes from 8.3×10-11 A to 0.1 A. Moreover, an order of magnitude improve in the current gain from the collector current of 8.1×10-10 A to 8.3×10-11 A. This gives promising implementations to low-power electronics and communication applications.

    Abstract List of Tables List of Figures Chapter 1 Introduction 1 1.1 Background 1 1.2 Organization 2 Chapter 2 Experimental method and results of LPO-oxide film 5 2.1 Introduction 5 2.2 Experimental procedures of LPO method 6 2.3 Thickness and refractive index of LPO-oxide film 7 2.4 Physical properties 8 2.4.1 SEM image 8 2.4.2 AFM image 8 2.5 Chemical properties 9 2.5.1 XPS analysis 9 2.5.2 AES analysis 10 Chapter 3 InGaP/GaAs Heterojunction Bipolar Transistor with Liquid Phase Oxidation Passivation 24 3.1 Introduction 24 3.1.1 The mechanism of the HBTs 24 3.1.2 Recombination current 25 3.2 Device fabrication 27 3.3 Experimental results and discussion 30 Chapter 4 Comparison Studies of Sulfur and LPO on InGaP/GaAs HBTs 51 4.1 Introduction 51 4.2 Device fabrication 52 4.3 Experimental results and discussion 53 Chapter 5 Conclusions 64 5.1 Conclusions 64 5.2 Future work 65 Reference 66

    [1] W. Schockley, “Circuit elements utilizing semiconductive material,” U. S. Patent,
    N. 2569, pp. 347, 1951.
    [2] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, N. 11, pp. 1535-1537, 1957.
    [3] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp. 12, 1972.
    [4] M. J. Mondry and H. Kroemer, “Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., vol. 6, pp. 175, 1985.
    [5] Sze SM, “High-speed semiconductor device,” New York, Wiley, 1990.
    [6] J. R. Lothian, J. M. Kuo, F. Ren, and S. J. Pearton, “Plasma and wet chemical etching of InGaP,” J. electronic meterials, vol. 21, pp. 441-445, 1992.
    [7] S. J. Pearton, F. Ren, W. S. Hobson, C. R. Abernathy, R. L. Masaities, and U. K. Chakrabarti, “Surface recombination velocities on processed InGaP p-n junctions,” Appl. Phys. Lett., vol. 63, pp. 3610-3612, 1993.
    [8] P. M. Mooney, “Deep donor levels (DX centers) in III-V semiconductors,” J. Appl. Phys., vol. 67, pp. R1-R24, 1990.
    [9] R. Plana, J. Graffeuil, S. L. Delage, H. Blanck, M. A. Fortepoisson, C. Brylinski, and E. Chartier, “Low frequency noise in self-aligned GaInP/GaAs heterojunction bipolar transistor,” Electron Lett., vol. 28, pp. 2354-2356, 1992.
    [10] H. H. Wang, Y. H. Wang, and M. P. Houng, “Near room temperature selective oxidation on GaAs using photoresist as a Mask,” Jpn. J. Appl. Phys., vol. 37, pp. L988-L990, 1998.
    [11] H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effect of pH values on the kinetics of liquid phase chemical enhanced oxidation of GaAs,” J. Electrochem. Soc., vol. 146, pp. 2328-2332, 1999.
    [12] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “A GaAs MOSFET with a liquid phase oxidized gate,” IEEE Electron Dev. Lett., vol. 20, pp. 18-20, 1999.
    [13] J. Y. Wu, H. H. Wang, Y. H. Wang and M. P. Houng, “GaAs MOSFET’s fabrication with a liquid phase oxidized gate,” IEEE Trans. Electron Dev., vol. 48, pp. 634-637, 2001.
    [14] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “Liquid phase chemical enhanced oxidation on AlGaAs and its application,” Jpn. J. Appl. Phys., vol. 43, pp. 4087-4091, 2004.
    [15] K. W. Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “AlGaAs/InGaAs metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor with a liquid phase oxidized AlGaAs as gate dielectric,” Solid-State Electron., vol. 49, pp. 213-217, 2005.
    [16] K. W. Lee, N. Y. Yang, P. W. Sze, M. P. Houng and Y. H. Wang, “Characteriszation of the InGaAs oxide prepared by liquid phase oxidation,” IEDMS, Hsinchu, Taiwan, 2004, pp.435-437.
    [17] K. W. Lee, Y. J. Lin, N. Y. Yang, Y. C Lee, P. W. Sze, Y. H. Wang and M. P. Houng, “InGaP/InGaAs/GaAs metal-oxide-semiconductor pseudomorphic high electron mobility transistor with a liquid phase oxidized InGaP gate,” ICSICT, Beijing, China, 2004, pp. 2301-2304.
    [18] D. J. Coleman, D. W. Shaw, and R. D. Dobrott, “On the mechanism of GaAs anodization,” J. Electrochem. Soc., vol. 124, pp. 239-241, 1977.
    [19] J. R. Meyer-Arendt, Introduction to classical and modern optics. Englewood Cliffs, N.J.: Prentice-Hall Inc., 1971.
    [20] T. Sugano, “Oxidation of GaAsP surface by oxygen plasma and properties of oxide film,” J. Electrochem. Soc., vol. 121, no. 1, pp. 113-118, 1974.
    [21] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Dev., vol. 34, pp. 2571-2579, 1987.
    [22] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
    [23] J. Masum, P. Parmiter, T. J. Hall, and M. Crouch, “Current analysis of polyimide passivated InGaP/GaAs HBT,” IEE Proc.-Circuits Devices Syst., 1996, vol. 143, pp. 307-312.
    [24] R. Driad, Z. H. Lu, S. Charbonneau, W. R. Mckinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
    [25] S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu and W. S. Lour, “Sulfur- and InGaP-passivated heterojunction bipolar transistors,” IWJT’04, Shanghai, China, 2004, pp. 228-231.
    [26] C. Y. Chen, S. I. Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of HBTs,” IEEE Trans. Electron Dev., vol. 51, pp. 1963-1971, 2004.
    [27] J. J Chen, G. B. Gao, and H. Morkoc, “Breakdown behavior of GaAs/AlGaAs HBT’s,” IEEE Trans. Electron Dev., vol. 36, pp. 2165-2172, 1989.
    [28] R. J. Malik, N. Chand, J. Nagle, R. W. Ryan, K. Alavi, and A. Y. Cho, “Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBT’s Grown by MBE,” IEEE Electron Dev. Lett., vol. 13, no. 11, pp. 557-559, 1992.
    [29] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Dev., vol. 41, pp. 643-647, 1994.
    [30] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistor with a step-graded base-collector heterojunction,” IEEE Trans. Electron Dev. Lett., vol. 16, pp. 479-481, 1995.
    [31] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
    [32] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.
    [33] R. lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.

    下載圖示 校內:2007-08-01公開
    校外:2008-08-01公開
    QR CODE