簡易檢索 / 詳目顯示

研究生: 阮氏儀仁
Nguyen Thi Nghi Nhan
論文名稱: 水熱合成的 p-BiFeO3 和 n-ZnO 及其複合薄膜用於各種應用
Hydrothermal-based Synthesis of p-BiFeO3 and n-ZnO and Their Composite Films for Various Applications
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 115
中文關鍵詞: BiFeO3 薄膜水熱合成各種形貌壓電光降解壓電光電化學水分解p-BiFeO3-n-ZnO異質結薄膜壓電勢壓電發電機
外文關鍵詞: BiFeO3 film, Hydrothermal synthesis, Various Morphologies, Piezophotodegradation, Piezophotoelectrochemical water splitting, BiFeO3–n-ZnO Heterojunction film, Piezopotential, Piezonanogenerator
ORCID: 0000-0003-3356-0795
相關次數: 點閱:147下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BiFeO3 (BFO)
    通過水熱法在FTO 基板上生長具有各種形貌的BFO薄膜,例如微粒(樣品I)、微孔板(樣品II)和微片(樣品III)。BFO薄膜的導電類型基於它們的費米能級和莫特-肖特基測量確定。樣品I (≈ 10.4 pm·V–1) 、 樣品II (≈ 19.7 pm·V–1) 和样品III (≈ 17.8 pm·V–1) 的壓電係數通過壓電力顯微鏡量測。使用 I-V 特性研究了三個樣品的壓電和壓電光電子效應。測定了樣品的每單位質量的電化學表面積 (ECSA) 和光致發光 (PL) 發射。對於 MB 溶液,樣品II 表現出優異的壓電光催化,降解速率常數 (k ≈ 19.8 x 10–3 min–1) , 其中活性的主要影響被證實為 OH· 和 ·O2– 自由基。此外,樣品II 表現出最高的壓電光電化學 (piezo-PEC) 電流密度 (≈ −0.83 mA·cm–2) 。最大施加的偏置光子到電流轉換 (ABPE) 約為 0.54% 在 –0.51 V 時。這些結果表明 BFO 樣品在壓電應用中的巨大潛力。
    BiFeO3-ZnO (BFO−ZnO)
    P-BFO−n-ZnO 複合薄膜在錫摻雜氧化銦 (ITO) 基板上通過水熱法在 200 oC 6 小時內合成。 BFO NRs、ZnO MPs 和 BFO-ZnO 樣品的 XRD 揭示了它們理想的結晶度。高倍率和低倍率的 SEM 圖像詳細說明了 BFO MPs 在對齊良好的 NRs 上的分佈。進行 Mott-Schottky 測量以確定樣品的平帶電位和導電類型。觀察到復合材料具有良好的 ECSA(≈ 69.8 mF·cm–2·mg–1)、優異的壓電係數 (d33 ≈ 26.5 pm·V–1)和載流子壽命。基於 I–V 特性研究了樣品的壓電和壓電光電子效應。理論計算揭示了所有樣品的各向異性應力誘導壓電勢。基於復合材料的壓電納米發電機表現出持久的輸出(VOC ≈ 0.16 V 和 ISC ≈ 1.2 μA)和出色的靈敏度(≈ 6.2 x 10–3 V·N–1) ;還闡明了它們的日常環境應用。 PENG的輸出在520個工作循環後表現出高耐久性和穩定性。 BFO–ZnO 複合材料、BFO MPs 和 ZnO NRs 的壓電光催化 k 值分別約為 30.4、14.9、9.6 x 10–3 min–1。複合樣品的最大 ABPE 值在 0.63 V 時約為 0.86%,高於單個 ZnO(≈ 0.19% 在 0.68 V)和 BFO(≈ 0.55% 在 -0.54 V)。

    BiFeO3 (BFO)
    BFO films with various morphologies such as microparticles (Sample I), microplates (Sample II), and microsheets (Sample III) were grown on FTO substrates by hydrothermal method. The conductivity type of BFO films were determined based on their Fermi energy level and Mott-Schottky measurement. The piezoelectric coefficients of the Samples I (≈ 10.4 pm·V−1), Sample II (≈ 19.7 pm·V–1) and Sample III (≈17.8 pm·V−1) were experimentally determined through piezoresponse force microscopy. The piezotronic and piezophototronic effects of the three samples were studied using I–V characteristics. The electrochemical surface areas (ECSAs) per unit mass and photoluminescence (PL) emission of the samples were determined. The Sample II also exhibited the superior piezophotocatalytic degradation rate constant (k ≈ 19.8 x 10−3 min−1) for MB solutions, in which OH· and ·O2– radicals were verified their predominant impact for the activity. Furthermore, the Sample II exhibited the highest piezophotoelectrochemical (piezo-PEC) current density (≈ − 0.83 mA·cm2) among the samples. The maximum applied bias photon-to-current conversion (ABPE) was approximately 0.54% at −0.51 V. These results indicate the great potential of BFO samples in piezoelectric applications.
    BiFeO3−ZnO (BFO−ZnO)
    p-BFO−n-ZnO composite films on tin-doped indium oxide (ITO) substrates were synthesized by a hydrothermal method at 200 oC in 6 h. The XRD of the BFO NRs, ZnO MPs, and BFO–ZnO samples revealed their desirable crystallinity. SEM images with high- and low- magnification detail the distribution of the BFO MPs on the well-aligned NRs. Mott–Schottky measurements were performed to determine the flat-band potential and conductivity type of the samples. The favorable ECSA (≈ 69.8 mF·cm−2·mg−1), superior piezoelectric coefficient (d33 ≈ 26.5 pm·V−1) and carrier lifetime were observed for the composite. The piezotronic and piezophototronic effects of the samples were investigated based on the I−V characteristics. Theoretical calculations revealed the decent anisotropic stress-induced piezoelectric potentials for all the samples. The composite-based piezoelectric nanogenerators exhibited the durable output (VOC ≈ 0.16 V and ISC≈ 1.2 μA) and excellent sensitivity (≈ 6.2 x 10−3 V·N−1); their daily environment application was also elucidated. The output of PENG exhibited high durability and stability after 520 working cycles. The piezophotocatalytic k values were approximately 30.4, 14.9, 9.6 x 10−3 min−1 for the BFO–ZnO composite, BFO MPs and ZnO NRs, respectively. The maximum ABPE value of the composite sample was approximately 0.86% at 0.63 V, which was higher than that of the individual ZnO (≈ 0.19% at 0.68 V) and BFO (≈ 0.55% at −0.54 V).

    Abstract I Contents VI Figure contents X Table contents XV Motivation XVI Chapter 1: Introduction 1 1.1 Background 1 1.1.1 Photocatalyst 1 1.1.2 Photodegradation 1 1.1.3 Photoelectrochemical water splitting 2 1.1.4 Piezophotodegradation 5 1.1.5 Piezo-photoelectrochemical (piezo-PEC) water splitting 7 1.2 p-n junction 8 1.2.1 Forward Bias 9 1.2.2 Reverse bias 10 1.2.3 I-V characteristics of a p-n junction diode 11 1.2.4 p-n junction in photocatalyst I-V 12 1.2.5 Effect of piezo-charges on the p-n junction in photocatalyst 14 1.3. Piezotronic and Piezophototronic effects 15 1.3.1 Piezotronic Effect 15 A. Piezotronic Effect on Metal–Semiconductor (M–S) contact 15 B. Piezotronic Effects on p–n Junction 16 1.3.2 Piezophototronic Effect 17 Chapter 2: BiFeO3 and ZnO 19 2.1 BiFeO3 (BFO) 19 2.1.1 Crystal structure of BiFeO3 19 2.1.2 Synthesis techniques for BFO 20 2.1.3 BiFeO3 application 22 A. Photocatalyst 22 B. Piezo-nanogenerator (PENG) 23 C. Photodetector 24 2.2 Zinc Oxide (ZnO) 25 2.2.1 Crystal structure of ZnO 25 2.2.2 Synthesis techniques of ZnO 26 2.2.3 ZnO application 28 A. Photocatalyst 28 B. Piezo-nanogenerator (PENG) 29 C. Photodetector 31 Chapter 3: Experimental methods 32 3.1 BiFeO3 32 3.1.1 BFO seed layer on FTO 32 3.1.2 BFO with various morphologies 32 3.2 BiFeO3–ZnO 34 3.2.1 ZnO nanorods 34 A. ZnO seed layer 34 B. ZnO nanorods on ITO 34 3.2.2 BiFeO3–ZnO composite 34 3.2.3 BFO microplates on ITO 35 3.3 Characterization 35 Chapter 4: Results and discussion 38 4.1 BFO 38 4.1.1 XRD 38 4.1.2 SEM 39 4.1.3 EDS 40 4.1.4 TEM 41 4.1.5 XPS 42 4.1.6 UV-Vis 43 4.1.7 UPS 44 4.1.8 Mott-Schottky measurement 45 4.1.9 Energy Band diagram 47 4.1.10 ECSA 48 4.1.11 PL 49 4.1.12 PFM 50 4.1.13 Piezotronic and piezophototronic effects 51 4.1.14 OCP 53 4.1.15 Photodegradation and piezophotodegradation application 54 4.1.16 PEC and piezoPEC application 57 4.2 BFO–ZnO 61 4.2.1 XRD 61 4.2.2 SEM 62 4.2.3 TEM 64 4.2.4 XPS 65 4.2.5 UV-Vis 67 4.2.6 UPS 68 4.2.7 Mott-Schottky measurement 69 4.2.8 Energy Band diagram 71 4.2.9 ECSA 72 4.2.10 PL 73 4.2.11 PFM 74 4.2.12 Piezotronic and photopiezotronic effects 76 4.2.13 COMSOL 79 4.2.14 OCP 81 4.2.15 Piezoelectric nanogenerators (PENGs) 82 4.2.16 Photodegradation and piezophotodegradation application 86 4.2.17 PEC and piezoPEC application 92 Chapter 5: Conclusions 97 References 99

    [1] Q.Q. Xu, X.Y. Gao, S.F. Zhao, Y.N. Liu, D. Zhang, K.C. Zhou, H. Khanbareh, W.S. Chen, Y. Zhang, C. Bowen, Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications, Advanced Materials, 33, 2008452 (2021).
    [2] Z. Liang, C.F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook, Applied Catalysis B: Environmental, 241, 256-269 (2019).
    [3] M.J. Wu, T. Zheng, H.W. Zheng, J.F. Li, W.C. Wang, M. Zhu, F.Z. Li, G.T. Yue, Y.Z. Gu, J.G. Wu, High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium-sodium niobate flexible piezoelectric composites, Journal of Materials Chemistry A, 6, 16439-16449 (2018).
    [4] R. Pandey, G. Khandelwal, I.A. Palani, V. Singh, S.J. Kim, A La-doped ZnO ultra-flexible flutter-piezoelectric nanogenerator for energy harvesting and sensing applications: a novel renewable source of energy, Nanoscale, 11, 14032-14041 (2019).
    [5] T. Soltani, A. Tayyebi, B.K. Lee, BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation, Catalysis Today, 340, 188-196 (2020).
    [6] F. Mushtaq, X.Z. Chen, M. Hoop, H. Torlakcik, E. Pellicer, J. Sort, C. Gattinoni, B.J. Nelson, S. Pane, Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation, Iscience, 4, 236 (2018).
    [7] H.L. You, Z. Wu, L.H. Zhang, Y.R. Ying, Y. Liu, L.F. Fei, X.X. Chen, Y.M. Jia, Y.J. Wang, F.F. Wang, S. Ju, J.L. Qiao, C.H. Lam, H.T. Huang, Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution, Angewandte Chemie International Edition, 58, 11779-11784 (2019).
    [8] E. Karamian, S. Sharifnia, Enhanced visible light photocatalytic activity of BiFeO3-ZnO p-n heterojunction for CO2 reduction, Materials Science and Engineering: B, 238, 142-148 (2018).
    [9] Y.X. Lei, Y.P. Zhang, W.M. Ding, L.Q. Yu, X.P. Zhou, C.M.L. Wu, Preparation and photoelectrochemical properties of BiFeO3/BiOI composites, RSC Advances, 10, 26658-26663 (2020).
    [10] L.X. Hu, H.M. Hu, W.C. Lu, Y.S. Lu, S.Q. Wang, Novel composite BiFeO3/ZrO2 and its high photocatalytic performance under white LED visible-light irradiation, Materials Research Bulletin, 120, 110605 (2019).
    [11] S.H. Shin, M.H. Lee, J.Y. Jung, J.H. Seol, J. Nah, Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO-ZnO p-n junction formation, Journal of Materials Chemistry C, 1, 8103-8107 (2013).
    [12] N. Jalali, P. Woolliams, M. Stewart, P.M. Weaver, M.G. Cain, S. Dunn, J. Briscoe, Improved performance of p-n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods, Journal of Materials Chemistry A, 2, 10945-10951 (2014).
    [13] R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catalysis Today, 281, 144-164 (2017).
    [14] X.L. Xing, S.L. Tang, H. Hong, H.G. Jin, Concentrated solar photocatalysis for hydrogen generation from water by titania-containing gold nanoparticles, International Journal of Hydrogen Energy, 45, 9612-9623 (2020).
    [15] A. Kutuzova, T. Dontsova, W. Kwapinski, Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin, Catalysts, 11, 728 (2021).
    [16] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M.R. Darvishi, ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation, Industrial & Engineering Chemistry Research, 59, 15894-15911 (2020).
    [17] S. Keerthana, R. Yuvakkumar, G. Ravi, S. Pavithra, M. Thambidurai, C. Dang, D. Velauthapillai, Pure and Ce-doped spinel CuFe2O4 photocatalysts for efficient rhodamine B degradation, Environmental Research, 200, 111528 (2021).
    [18] S. Adhikari, D. Sarkar, G. Madras, Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol, ACS Omega, 2, 4009-4021 (2017).
    [19] N. Thomas, S. Mathew, K.M. Nair, K. O'Dowd, P. Forouzandeh, A. Goswami, G. McGranaghan, S.C. Pillai, 2D MoS2: structure, mechanisms, and photocatalytic applications, Materials Today Sustainability, 13, 100073 (2021).
    [20] W.J. Li, Z.Y. Lin, G.W. Yang, A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution, Nanoscale, 9, 18290-18298, (2017).
    [21] L.Z. Pei, N. Lin, T. Wei, H.D. Liu, H.Y. Yu, Zinc vanadate nanorods and their visible light photocatalytic activity, Journal of Alloys and Compounds, 631, 90-98 (2015).
    [22] Z.L. Wang, J.J. Fan, B. Cheng, J.G. Yu, J.S. Xu, Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction, Materials Today Physics, 15, 1000279 (2020).
    [23] R.Y. Bao, Y.M. Yu, H.Y. Chen, W.Z. Wang, J.X. Xia, H. Li, Effects of Rare Earth Elements and Nitrogen Co-Doped on the Photocatalytic Performance of TiO2, Crystal Research and Technology, 53, 1700138 (2018).
    [24] L.J. Wang, H.J. Zhai, G. Jin, X.Y. Li, C.W. Dong, H. Zhang, B. Yang, H.M. Xie, H.Z. Sun, 3D porous ZnO-SnS p-n heterojunction for visible light driven photocatalysis, Physical Chemistry Chemical Physics, 19, 16576-16585 (2017).
    [25] C.R. Jiang, S.J.A. Moniz, A.Q. Wang, T. Zhang, J.W. Tang, Photoelectrochemical devices for solar water splitting - materials and challenges, Chemical Society Reviews, 46, 4645-4660 (2017).
    [26] H.H. Do, D.L.T. Nguyen, X.C. Nguyen, T.H. Le, T.P. Nguyen, Q.T. Trinh, S.H. Ahn, D.V.N. Vo, S.Y. Kim, Q.V. Le, Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review, Arabian Journal of Chemistry, 13, 3653-3671 (2020).
    [27] B.S. Wang, R.Y. Li, Z.Y. Zhang, Xing-Wang, X.L. Wu, G.A. Cheng, R.T. Zheng, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting, Catalysis Today, 321, 100-106 (2019).
    [28] P. Sharma, J.W. Jang, J.S. Lee, Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of alpha-Fe2O3 Photoanode, Chemcatchem, 11, 157-179 (2019).
    [29] P. Dias, T. Lopes, L. Meda, L. Andrade, A. Mendes, Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles, Physical Chemistry Chemical Physics, 18, 5232-5243 (2016).
    [30] W. Ye, F.J. Chen, F.P. Zhao, N. Han, Y.G. Li, CuWO4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation, ACS Applied Materials & Interfaces, 8, 9211-9217 (2016).
    [31] S. Kumar, S. Ahirwar, A.K. Satpati, Insight into the PEC and interfacial charge transfer kinetics at the Mo doped BiVO4 photoanodes, RSC Advances, 9, 41368-41382 (2019).
    [32] C.Y. Shao, R.T. Chen, Y.L. Zhao, Z. Li, X. Zong, C. Li, Reducing the surface defects of Ta3N5 photoanode towards enhanced photoelectrochemical water oxidation, Journal of Materials Chemistry A, 8, 23274-23283 (2020).
    [33] T.L.L. H. V. Le, U. T. D. Thuy and P. D. Tran, Current perspectives in engineering of viable hybrid photocathodes for solar hydrogen generation, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 023001 (2018).
    [34] S. Ikeda, W. Fujita, R. Okamoto, Y. Nose, R. Katsube, K. Yoshino, T. Harada, Preparation of a CuGaSe2 single crystal and its photocathodic properties, RSC Advances, 10, 40310-40315 (2020).
    [35] C. Jung, T. Lim, H. Bae, J.S. Ha, A.A. Martinez-Morales, Cu2O Photocathode with Faster Charge Transfer by Fully Reacted Cu Seed Layer to Enhance Performance of Hydrogen Evolution in Solar Water Splitting Applications, ChemCatChem, 11, 4377-4382 (2019).
    [36] M.S. Prevot, N. Guijarro, K. Sivula, Enhancing the Performance of a Robust Sol-Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction, ChemSusChem, 8, 1359-1367 (2015).
    [37] F.X. Wang, W. Septina, A. Chemseddine, F.F. Abdi, D. Friedrich, P. Bogdanoff, R. van de Krol, S.D. Tilley, S.P. Berglund, Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency, Journal of the American Chemical Society, 139, 15094-15103 (2017).
    [38] M.I. Diez-Garcia, R. Gomez, Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy, ACS Applied Materials & Interfaces, 8, 21387-21397 (2016).
    [39] V. Celorrio, K. Bradley, O.J. Weber, S.R. Hall, D.J. Fermin, Photoelectrochemical Properties of LaFeO3 Nanoparticles, ChemElectroChem, 1, 1667-1671 (2014).
    [40] K. Sekizawa, K. Oh-ishi, T. Morikawa, Photoelectrochemical water-splitting over a surface modified p-type Cr2O3 photocathode, Dalton Transactions, 49, 659-666 (2020).
    [41] Z.R. Liu, X. Yu, L.L. Li, Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field, Chinese J Catal, 41 (2020) 534-549.
    [42] X.F. Liu, L.Y. Xiao, Y. Zhang, H.J. Sun, Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye, Journal of Materiomics, 6, 256-262 (2020).
    [43] X.Y. Xue, W.L. Zang, P. Deng, Q. Wang, L.L. Xing, Y. Zhang, Z.L. Wang, Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires, Nano Energy, 13, 414-422 (2015).
    [44] Y.T. Wang, K.S. Chang, Piezopotential-Induced Schottky Behavior of Zn1-xSnO3 Nanowire Arrays and Piezophotocatalytic Applications, Journal of the American Ceramic Society, 99, 2593-2600 (2016).
    [45] Q. Fu, X.J. Wang, C.Y. Li, Y. Sui, Y.P. Han, Z. Lv, B. Song, P. Xu, Enhanced photocatalytic activity on polarized ferroelectric KNbO3, RSC Advances, 6, 108883-108887 (2016).
    [46] J. Wu, N. Qin, D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration, Nano Energy, 45, 44-51 (2018).
    [47] D. Kumar, S. Sharma, N. Khare, Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity, Renewable Energy, 163, 1569-1579 (2021).
    [48] S.C. Zhang, Z.F. Liu, M.N. Ruan, Z.G. Guo, L. E, W. Zhao, D. Zhao, X.F. Wu, D.M. Chen, Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts, Applied Catalysis B: Environmental, 262, 118279 (2020).
    [49] S. Singh, N. Khare, Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst, Nano Energy, 38, 335-341, (2017).
    [50] W.G. Yang, Y.H. Yu, M.B. Starr, X. Yin, Z.D. Li, A. Kvit, S.F. Wang, P. Zhao, X.D. Wang, Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes, Nano Letters, 15, 7574-7580 (2015).
    [51] C. Hu, Modern Semiconductor Devices for Integrated Circuits, Book, Chapter 4 (2010) 89.
    [52] R.M. V.K. Mehta, Objective Electrical Technology, S. Chand Publishing, 990 (2008).
    [53] K.N.B. M. K. Achuthan, Fundamentals Of Semiconductor Devices, McGraw-Hill, Inc, 85 (2004).
    [54] M. Fukuda, Optical Semiconductor Devices, Wiley, 381 1998).
    [55] W.Z. Wang, J. Wang, Z.Z. Wang, X.Z. Wei, L. Liu, Q.S. Ren, W.L. Gao, Y.J. Liang, H.L. Shi, p-n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance, Dalton Transactions, 43, 6735-6743 (2014).
    [56] D.A.K. Alenazi, M. Aslam, S. Chandrasekaran, M.T. Soomro, S. Ali, E.Y. Danish, I.M.I. Ismail, A. Hameed, Facile fabrication of MoO3/g-C3N4 p-n junction for boosted photocatalytic elimination of 2,4-D under natural sunlight exposure, Journal of Environmental Chemical Engineering, 9, 106304 (2021).
    [57] Y. Zhang, A.R. Sun, M.Y. Xiong, D.K. Macharia, J.S. Liu, Z.G. Chen, M.Q. Li, L.S. Zhang, TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants, Chemical Engineering Journal, 415, 128019 (2021).
    [58] J. Liu, X.C. Zhang, Q. Zhong, J. Li, H.Z. Wu, B. Zhang, L. Jin, H.B. Tao, B. Liu, Electrostatic self-assembly of a AgI/Bi2Ga4O9 p-n junction photocatalyst for boosting superoxide radical generation, Journal of Materials Chemistry A, 8, 4083-4090 (2020).
    [59] W.H. Fei, H.Y. Li, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J.M. Lu, Facile fabrication of ZnO/MoS2 p-n junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process, Solar Energy, 199, 164-172 (2020).
    [60] C. Liu, F.L. Meng, L. Zhang, D.T. Zhang, S.T. Wei, K. Qi, J.C. Fan, H.Y. Zhang, X.Q. Cui, CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation, Applied Surface Science, 469, 276-282 (2019).
    [61] P.D. Wu, Z.F. Liu, D. Chen, M. Zhou, J.D. Wei, Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting, Applied Surface Science, 440, 1101-1106 (2018).
    [62] S.L. Bai, Q.Q. Li, J.Y. Han, X.J. Yang, X. Shu, J.H. Sun, L.X. Sun, R.X. Luo, D.Q. Li, A.F. Chen, Photoanode of LDH catalyst decorated semiconductor heterojunction of BiVO4/CdS to enhance PEC water splitting efficiency, International Journal of Hydrogen Energy, 44, 24642-24652 (2019).
    [63] C.J. Zhang, W.H. Fei, H.Q. Wang, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J.M. Lu, p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water, Journal of Hazardous Materials, 399, 123109 (2020).
    [64] W. Zhao, Q. Zhang, H.G. Wang, J.C. Rong, E. Lei, Y.J. Dai, Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect, Nano Energy, 73, 104783 (2020).
    [65] Z.L. Wang, W.Z. Wu, Piezotronics and piezo-phototronics: fundamentals and applications, National Science Review, 1, 62-90 (2014).
    [66] Z.L. Wang, Piezotronics and Piezo-phototronics, Springer, 1 (2012).
    [67] W.Z. Wu, C.F. Pan, Y. Zhang, X.N. Wen, Z.L. Wang, Piezotronics and piezo-phototronics - From single nanodevices to array of devices and then to integrated functional system, Nano Today, 8, 619-642 (2013).
    [68] Z.L. Wang, Preface to the Special Section on Piezotronics, Advanced Materials, 24, 4630-4631 (2012).
    [69] C.F. Pan, J.Y. Zhai, Z.L. Wang, Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires, Chemical Reviews, 119, 9303-9359 (2019).
    [70] Z.J. Pan, W.B. Peng, F.P. Li, Y.H. Cai, Y.N. He, On the Piezo-Phototronic Effect in Si/ZnO Heterojunction Photodiode: The Effect of the Fermi-Level Difference, Advanced Functional Materials, 30, 2005996 (2020).
    [71] F. Kubel, H. Schmid, Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO3, Acta Crystallographica Section B, 46, 698-702 (1990).
    [72] H. Naganuma, Multifunctional Characteristics of B-site Substituted BiFeO3 Films, Ferroelectrics - Physical Effects, London: IntechOpen, 373-404 (2011).
    [73] R. Haumont, J. Kreisel, P. Bouvier, Raman scattering of the model multiferroic oxide BiFeO3: effect of temperature, pressure and stress, Phase Transitions, 79, 1043-1064 (2006).
    [74] H.Y. Guo, J.G. Lin, Ferroelectric domain structure of highly textured BiFeO3 microcrystal films prepared by hydrothermal method, Journal of Crystal Growth, 364, 145-148 (2013).
    [75] J.M. Vila-Fungueirino, A. Gomez, J. Antoja-Lleonart, J. Gazquez, C. Magen, B. Noheda, A. Carretero-Genevrier, Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO3 thin films grown by polymer assisted deposition, Nanoscale, 10, 20155-20161 (2018).
    [76] G.S. Lotey, N.K. Verma, Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles, Materials Letters, 111, 55-58 (2013).
    [77] M.M. Rashad, Effect of synthesis conditions on the preparation of BiFeO3 nanopowders using two different methods, Journal of Materials Science: Materials in Electronics, 23, 882-888 (2012).
    [78] B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, Effect of alkaline earth metal doping on thermal, optical, magnetic and dielectric properties of BiFeO3 nanoparticles, Journal of Physics D: Applied Physics, 42, 065004 (2009).
    [79] M. Tomczyk, D.G. Stroppa, I.M. Reaney, P.M. Vilarinho, Growth of BiFeO3 thin films by chemical solution deposition: the role of electrodes, Physical Chemistry Chemical Physics, 19, 14337-14344 (2017).
    [80] A.V. Semchenko, V.V. Sidsky, I. Bdikin, V.E. Gaishun, S. Kopyl, D.L. Kovalenko, O. Pakhomov, S.A. Khakhomov, A.L. Kholkin, Nanoscale Piezoelectric Properties and Phase Separation in Pure and La-Doped BiFeO3 Films Prepared by Sol-Gel Method, Materials, 14, 1694 (2021).
    [81] J.X. Wang, L. Luo, C.L. Han, R. Yun, X.G. Tang, Y.J. Zhu, Z.G. Nie, W.R. Zhao, Z.C. Feng, The Microstructure, Electric, Optical and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Low Temperature Sol-Gel Method, Materials, 12, 1444 (2019).
    [82] X.R. Wang, C.W. Yang, D. Zhou, Z.Y. Wang, M.L. Jin, Chemical co-precipitation synthesis and properties of pure-phase BiFeO3, Chemical Physics Letters, 713, 185-188 (2018).
    [83] S. Li, G.S. Zhang, H.S. Zheng, N.N. Wang, Y.J. Zheng, P. Wang, Microwave-assisted synthesis of BiFeO3 nanoparticles with high catalytic performance in microwave-enhanced Fenton-like process, RSC Advances, 6, 82439-82446 (2016).
    [84] A. Syed, A. Siddaramanna, A.M. Elgorban, D.A. Hakeem, G. Nagaraju, Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior, Magnetochemistry, 6, 42 (2020).
    [85] A.S. A. Syed, A. M. Elgorban, D. A. Hakeem and, G. Nagaraju, Hydrothermal synthesis of (00l) epitaxial BiFeO3 films on SrTiO3 substrate, CrystEngComm, 12, 3806-3814 (2010).
    [86] T.K. Lee, K.D. Sung, J.H. Jung, Electric polarization and diode-like conduction in hydrothermally grown BiFeO3 thin films, Journal of Alloys and Compounds, 622, 734-737 (2015).
    [87] X.H. Ren, H.Q. Fan, Y.W. Zhao, Z.Y. Liu, Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester, ACS Applied Materials & Interfaces, 8, 26190-26197 (2016).
    [88] A. Ichangi, K. Le, A. Queralto, M. Grosch, R. Weissing, F. Unlu, A.K. Chijioke, A. Verma, T. Fischer, R. Surmenev, S. Mathur, Electrospun BiFeO3 Nanofibers for Vibrational Energy Harvesting Application, Advanced Engineering Materials, 24, 2101394 (2022).
    [89] J.D. Liu, D. Yu, Z.P. Zheng, H.F. Geng, Y.P. Guo, Lead-free BiFeO3 film on glass fiber fabric: Wearable hybrid piezoelectric-triboelectric nanogenerator, Ceramics International, 47, 3573-3579 (2021).
    [90] A. Kathirvel, A.U. Maheswari, S.K. Batabyal, M. Sivakumar, BiFeO3-Thiourea/Carbon heterostructure based self-powered white light photodetector, Materials Letters, 284, 128906 (2021).
    [91] R.D. Zhao, N. Ma, K. Song, Y. Yang, Boosting Photocurrent via Heating BiFeO3 Materials for Enhanced Self-Powered UV Photodetectors, Advanced Functional Materials, 30, 1906232 (2020).
    [92] S. Mondal, K. Dutta, S. Dutta, D. Jana, A.G. Kelly, S. De, Efficient Flexible White-Light Photodetectors Based on BiFeO3 Nanoparticles, ACS Applied Nano Materials, 1, 625-631 (2018).
    [93] E.Y. Shaba, J.O. Jacob, J.O. Tijani, M.A.T. Suleiman, A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment, Applied Water Science, 11, 48 (2021).
    [94] S.S. D. K. Sharma, K. K. Sharma, V. Kumar, A review on ZnO: Fundamental properties and applications, Materials Today: Proceedings, 49, 3028–3035 (2022).
    [95] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Research, 88, 428-448 (2016).
    [96] R. Muller, F. Huber, O. Gelme, M. Madel, J.P. Scholz, A. Minkow, U. Herr, K. Thonke, Chemical Vapor Deposition Growth of Zinc Oxide on Sapphire with Methane: Initial Crystal Formation Process, Crystal Growth & Design, 19, 4964-4969 (2019).
    [97] L.H. Minh, P.T.T. Thu, B.Q. Thanh, N.T. Hanh, D.T.T. Hanh, N.V. Toan, C.M. Hung, N.V. Duy, P.V. Tong, N.D. Hoa, Hollow ZnO nanorices prepared by a simple hydrothermal method for NO2 and SO2 gas sensors, RSC Advances, 11, 33613-33625 (2021).
    [98] R.E. Adam, G. Pozina, M. Willander, O. Nur, Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH, Photonics and Nanostructures - Fundamentals and Applications, 32, 11-18 (2018).
    [99] N. Ben Moussa, M. Lajnef, N. Jebari, C. Villebasse, F. Bayle, J. Chaste, A. Madouri, R. Chtourou, E. Herth, Synthesis of ZnO sol-gel thin-films CMOS-Compatible, RSC Advances, 11, 22723-22733 (2021).
    [100] Z.N. Kayani, F. Saleemi, I. Batool, Effect of calcination temperature on the properties of ZnO nanoparticles, Applied Physics A, 119, 713-720 (2015).
    [101] V. Gerbreders, M. Krasovska, E. Sledevskis, A. Gerbreders, I. Mihailova, E. Tamanis, A. Ogurcovs, Hydrothermal synthesis of ZnO nanostructures with controllable morphology change, CrystEngComm, 22, 1346-1358 (2020).
    [102] Y.N. Qu, R.L. Huang, W. Qi, M.B. Shi, R.X. Su, Z.M. He, Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity, Catalysis Today, 355, 397-407 (2020).
    [103] R. Shidpour, A. Simchi, F. Ghanbari, M. Vossoughi, Photo-degradation of organic dye by zinc oxide nanosystems with special defect structure: Effect of the morphology and annealing temperature, Applied Catalysis A: General, 472, 198-204 (2014).
    [104] Y. Ye, K.Q. Wang, X.Y. Huang, R. Lei, Y. Zhao, P. Liu, Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation, Catalysis Science & Technology, 9, 3771-3778 (2019).
    [105] Y. Li, H.F. Chen, L.K. Wang, T.T. Wu, Y. Wu, Y.M. He, KNbO3/ZnO heterojunction harvesting ultrasonic mechanical energy and solar energy to efficiently degrade methyl orange, Ultrasonics Sonochemistry, 78, 105754 (2021).
    [106] Y. Yu, B.H. Yao, Y.Q. He, B.Y. Cao, Y.L. Ren, Q.Q. Sun, Piezo-enhanced photodegradation of organic pollutants on Ag3PO4/ZnO nanowires using visible light and ultrasonic, Applied Surface Science, 528, 146819 (2020).
    [107] Y.F. Hu, Z.L. Wang, Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors, Nano Energy, 14, 3-14 (2015).
    [108] P. Fakhri, B. Amini, R. Bagherzadeh, M. Kashfi, M. Latifi, N. Yavari, S.A. Kani, L.X. Kong, Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output, RSC Advances, 9, 10117-10123 (2019).
    [109] S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, ZnO based visible-blind UV photodetector by spray pyrolysis, Superlattices and Microstructures, 76, 253-263 (2014).
    [110] M.S. Choi, T. Park, W.J. Kim, J. Hur, High-Performance Ultraviolet Photodetector Based on a Zinc Oxide Nanoparticle@Single-Walled Carbon Nanotube Heterojunction Hybrid Film, Nanomaterials, 10, 395 (2020).
    [111] S.J. Young, Y.H. Liu, M.D.N.I. Shiblee, K. Ahmed, L.T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, A. Khosla, Flexible Ultraviolet Photodetectors Based on One-Dimensional Gallium-Doped Zinc Oxide Nanostructures, ACS Applied Electronic Materials, 2, 3522-3529 (2020).
    [112] T.N.N. Nguyen, K.S. Chang, Piezophotodegradation and piezophotoelectrochemical water splitting of hydrothermally grown BiFeO3 films with various morphologies, Journal of Environmental Chemical Engineering, 10, 107213 (2022).
    [113] T.N.N. Nguyen, K.S. Chang, Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films, Renewable Energy, 197, 89-100 (2022).
    [114] D. Voiry, M. Chhowalla, Y. Gogotsi, N.A. Kotov, Y. Li, R.M. Penner, R.E. Schaak, P.S. Weiss, Best Practices for Reporting Electrocatalytic Performance of Nanomaterials, ACS Nano, 12, 9635-9638 (2018).
    [115] N. Miriyala, K. Prashanthi, T. Thundat, Oxygen vacancy dominant strong visible photoluminescence from BiFeO3 nanotubes, Physica Status Solidi - Rapid Research Letters, 7, 668-671 (2013).
    [116] H. Lee, J. Park, S.A. Han, D. Lee, K.B. Kim, N.S. Lee, J.Y. Park, Y. Seo, S. Lee, Y.J. Choi, The stress-dependent piezoelectric coefficient of ZnO wire measured by piezoresponse force microscopy, Scripta Materialia, 66, 101-104 (2012).
    [117] X. Li, J.Q. Wan, Y.W. Ma, Y. Wang, X.T. Li, Study on cobalt-phosphate (Co-Pi) modified BiVO4/Cu2O photoanode to significantly inhibit photochemical corrosion and improve the photoelectrochemical performance, Chemical Engineering Journal, 404, 127054 (2021).
    [118] H. Dotan, N. Mathews, T. Hisatomi, M. Gratzel, A. Rothschild, On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting, The Journal of Physical Chemistry Letters, 5, 3330-3334 (2014).
    [119] S. Gupta, M. Tomar, V. Gupta, Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film, Journal of Applied Physics, 115, 014102 (2014).
    [120] A. Malathi, P. Arunachalam, V.S. Kirankumar, J. Madhavan, A.M. Al-Mayouf, An efficient visible light driven bismuth ferrite incorporated bismuth oxyiodide (BiFeO3/BiOI) composite photocatalytic material for degradation of pollutants, Optical Materials, 84, 227-235 (2018).
    [121] A.G. Song, S.P. Berglund, A. Chemseddine, D. Friedrich, F.F. Abdi, R. van de Krol, Elucidating the optical, electronic, and photoelectrochemical properties of p-type copper vanadate (p-Cu5V2O10) photocathodes, Journal of Materials Chemistry A, 8, 12538-12547 (2020).
    [122] X. Lu, Z.F. Liu, Efficient all p-type heterojunction photocathodes for photoelectrochemical water splitting, Dalton Transactions, 46, 7351-7360 (2017).
    [123] G. Yergaliuly, B. Soltabayev, S. Kalybekkyzy, Z. Bakenov, A. Mentbayeva, Effect of thickness and reaction media on properties of ZnO thin films by SILAR, Scientific Reports, 12, 851 (2022).
    [124] D. Calestani, M. Culiolo, M. Villani, D. Delmonte, M. Solzi, T.Y. Kim, S.W. Kim, L. Marchini, A. Zappettini, Functionalization of carbon fiber tows with ZnO nanorods for stress sensor integration in smart composite materials, Nanotechnology, 29 (2018) 335501.
    [125] S.L. Wu, J. Zhang, X.Y. Liu, S.Y. Lv, R.L. Gao, W. Cai, F.Q. Wang, C.L. Fu, Micro-Area Ferroelectric, Piezoelectric and Conductive Properties of Single BiFeO3 Nanowire by Scanning Probe Microscopy, Nanomaterials, 9, 190 (2019).
    [126] R. Tao, C.L. Shao, X.H. Li, X.W. Li, S. Liu, S. Yang, C.C. Zhao, Y.C. Liu, Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability, Journal of Colloid and Interface Science, 529, 404-414 (2018).
    [127] S. Chaiwichian, K. Wetchakun, W. Kangwansuparnonkon, N. Wetchakun, Novel visible-light-driven BiFeO3-Bi2WO6 nanocomposites toward degradation of dyes, Journal of Photochemistry and Photobiology A: Chemistry, 349, 183-192 (2017).
    [128] Y. Subramanian, V. Ramasamy, R.J. Karthikeyan, G.R. Srinivasan, D. Arulmozhi, R.K. Gubendiran, M. Sriramalu, Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3-GdFeO3 nanocomposite photocatalyst, Heliyon, 5, e01831 (2019).
    [129] F. Niu, D. Chen, L.S. Qin, N. Zhang, J.Y. Wang, Z. Chen, Y.X. Huang, Facile Synthesis of Highly Efficient p-n Heterojunction CuO/BiFeO3 Composite Photocatalysts with Enhanced Visible-Light Photocatalytic Activity, ChemCatChem, 7, 3279-3289 (2015).
    [130] T. Fan, C.C. Chen, Z.H. Tang, Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation, RSC Advances, 6, 9994-10000 (2016).
    [131] T. Bavani, J. Madhavan, S. Prasad, M.S. AlSalhi, M.J. AlJaafreh, A straightforward synthesis of visible light driven BiFeO3/AgVO3 nanocomposites with improved photocatalytic activity, Environmental Pollution, 269, 116067 (2021).
    [132] Y. Fu, Z.P. Mao, D. Zhou, Z.L. Hu, Y.F. Tu, Y. Tian, X.L. Zhu, G. Zheng, Preparation of BiFeO3-overcoated TiO2 nanorod arrays for the enhanced visible-light activity, Materials Research Express, 6, 1050c6 (2019).
    [133] Y.L. Huang, W.S. Chang, C.N. Van, H.J. Liu, K.A. Tsai, J.W. Chen, H.H. Kuo, W.Y. Tzeng, Y.C. Chen, C.L. Wu, C.W. Luo, Y.J. Hsu, Y.H. Chu, Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure, Nanoscale, 8, 15795-15801 (2016).
    [134] L.T. Quynh, C.N. Van, Y. Bitla, J.W. Chen, T.H. Do, W.Y. Tzeng, S.C. Liao, K.A. Tsai, Y.C. Chen, C.L. Wu, C.H. Lai, C.W. Luo, Y.J. Hsu, Y.H. Chu, Self-Assembled BiFeO3-epsilon-Fe2O3 Vertical Heteroepitaxy for Visible Light Photoelectrochemistry, Advanced Energy Materials, 6, 1600686 (2016).
    [135] X.Y. Yan, R.H. Pu, R.J. Xie, B.Y. Zhang, Y.N. Shi, W.M. Liu, G.J. Ma, N. Yang, Design and fabrication of Bi2O3/BiFeO3 heterojunction film with improved photoelectrochemical performance, Applied Surface Science, 552, 149442 (2021).
    [136] A.S. Zhu, Q.D. Zhao, X.Y. Li, Y. Shi, BiFeO3/TiO2 Nanotube Arrays Composite Electrode: Construction, Characterization, and Enhanced Photoelectrochemical Properties, ACS Applied Materials & Interfaces, 6, 671-679 (2014).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE