簡易檢索 / 詳目顯示

研究生: 許子承
Hsu, Tzu-Cheng
論文名稱: 系統性整合與優化低溫極化微拉曼散射光電量測平台
Systematic Integration and Optimization of Low Temperature Polarized Micro-Raman Scattering Optoelectronic Measurement Platforms
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 導電高分子聚(3-己基噻吩)自組裝單分子層低溫極化拉曼光譜熱膨脹
外文關鍵詞: conductive polymer, poly(3-hexylthiophene), self-assembled monolayer, low-temperature polarized Raman spectroscopy, thermal expansion
相關次數: 點閱:47下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電高分子材料因其可撓性、輕量特性及優異的導電性能,在電子元件中展現出廣泛的應用潛力,特別是作為半導體傳導層的核心材料。然而高分子薄膜機械強度較低,導致在承受應力時難以維持穩定且可靠的電學性能。此外高分子薄膜傾向以無序的非結晶相沉積,將進一步降低元件中載子的傳導效率。因此提高導電高分子薄膜的有序性為問題的關鍵。
    本研究旨在通過統一矽基板表面分子組成,定量調控表面親水基的密度,以系統性地調節自組裝單分子層的嫁接密度。這種方法能有效控制導電高分子與自組裝單分子層之間的分子間作用力,進而優化導電高分子的沉積過程,提升薄膜內的電子結構。該研究為未來埃米級分子間作用力設計、分子磊晶及有機半導體電子結構的精確控制提供了理論支持和技術基礎。本研究優化了偏極化微拉曼散射頻譜儀的光學準直性。並自主搭建了液氦極低溫系統,將其整合進偏極化微拉曼散射頻譜儀中。根據變溫拉曼頻譜藍移,結合基礎熱力學參數進行模型推導,分析高分子晶格振盪與溫度變化之間的關係。通過對實驗結果進行線性擬合,獲得高分子晶格的熱膨脹係數。將微觀的分子間振盪頻率轉換為宏觀材料受溫度變化的形變程度,從而提供固態薄膜內軟性分子的定量化溫度膨脹參數。此研究為有機電子學領域提供了系統化的實驗與分析方法,能夠系統性地控制並分析高分子排列,為定量控制有機半導體埃米級電子結構開創了可靠的方向。

    Conductive polymers have tunable band gaps and good conductivity, making them suitable semiconducting materials for electronic devices. However, the flexible backbone of conductive polymers tends to become entangled during the film formation process, leading to the formation of amorphous phases that can act as defects that impede carrier transport. To improve carrier transport efficiency in conductive polymer films, it is necessary to control the orientation of the polymer backbones through process. This study focuses on the systematic control of the solute-solvent-substrate interactions during the liquid phase process to achieve an ordered alignment of the polymer backbones in the film. Building on the optimized conditions for solute-solvent molecular interactions, the research will modify the surface of silicon substrates with nanogrooves of different self-assembled monolayers (SAMs) densities to create conditions favorable for the ordered polymer precipitation. Polarized Raman scattering spectrometer is used to analyses the Raman vibrational response of backbones with different alignment under low temperature conditions. By using self-derived thermodynamic parameters model, the relationship between lattice vibrations and temperature variations was analyzed. A linear fit of the experimental results yielded the thermal expansion coefficient (CTE) of the polymer film, which increases with the order of the polymer alignment. This approach provides a quantitative thermal expansion parameter for flexible polymer within solid films. This method provides a new perspective on the study of flexible organic electronic devices.

    中文摘要I 目錄VII 表目錄X 圖目錄XI 第一章、緒論1 研究動機1 第二章、文獻回顧3 2.1 導電高分子3 2.1.1 導電高分子簡介3 2.1.2 導電高分子載子傳導路徑6 2.1.3 導電高分子溶液的相轉變8 2.1.4 導電高分子薄膜製程9 2.2 自組裝單分子層10 2.2.1 自組裝單分子層簡介10 2.2.2 自組裝單分子層沉積11 2.3 頻譜異向性定義與分析14 2.3.1 異向性(Anisotropy)14 2.4.2 二色向比(Dichroic ratio)15 第三章、實驗材料和儀器16 3.1 實驗藥品與材料16 3.2 實驗裝置17 3.3 量測儀器與原理20 3.3.1 接觸角量測系統(Contact Angle Measurement System)20 3.3.2 原子力顯微鏡(Atomic Force Microscopy)22 3.3.3 極化拉曼散射光譜儀(Polarized Raman Scattering Spectrometer)24 第四章、實驗架構與流程26 4.1.有序高分子薄膜製備流程26 4.1.1 晶圓切割26 4.1.2 基板表面飽和活化26 4.1.3 設計奈米溝槽28 4.1.4 表面改質28 4.1.5 高分子薄膜沉積30 4.2 實驗儀器架設31 4.2.1 偏極化拉曼散射頻譜儀優化31 4.2.2 低溫系統架設及與偏極化微拉曼散射光路整合35 第五章、實驗結果與討論37 5.1 矽基板表面改質37 5.1.1 矽基板表面統一化37 5.1.2 奈米溝槽改質40 5.1.3 紫外光臭氧處理改質42 5.1.4 自組裝單分子層改質43 5.2 P3HT薄膜之偏極化微拉曼散射頻譜45 5.2.1 P3HT高分子固態薄膜異向性45 5.3.2 P3HT高分子固態薄膜之變溫拉曼散射與分析48 第六章、結論55 第七章、參考文獻56

    1.Panzer, F., et al., The impact of polydispersity and molecular weight on the order–disorder transition in poly (3-hexylthiophene). The journal of physical chemistry letters, 2014. 5(15): p. 2742-2747.
    2.Kumar, D. and R. Sharma, Advances in conductive polymers. European polymer journal, 1998. 34(8): p. 1053-1060.
    3.Abrahamsson, T., Synthetic Functionalities for Ion and Electron Conductive Polymers: Applications in Organic Electronics and Biological Interfaces. 2021, Linköping University Electronic Press.
    4.Hu, H., et al., Entanglements in marginal solutions: a means of tuning pre-aggregation of conjugated polymers with positive implications for charge transport. Journal of Materials Chemistry C, 2015. 3(28): p. 7394-7404.
    5.Wietzke, S., et al., Thermomorphological study of the terahertz lattice modes in polyvinylidene fluoride and high-density polyethylene. Applied Physics Letters, 2010. 97(2).
    6.Osaka, I. and K. Takimiya, Backbone orientation in semiconducting polymers. Polymer, 2015. 59: p. A1-A15.
    7.Esseni, D. and F. Driussi, A quantitative error analysis of the mobility extraction according to the Matthiessen rule in advanced MOS transistors. IEEE Transactions on Electron Devices, 2011. 58(8): p. 2415-2422.
    8.Zaumseil, J., P3HT and other polythiophene field-effect transistors. P3HT Revisited–From Molecular Scale to Solar Cell Devices, 2014: p. 107-137.
    9.Panzer, F., H. Bässler, and A. Köhler, Temperature induced order–disorder transition in solutions of conjugated polymers probed by optical spectroscopy. The journal of physical chemistry letters, 2017. 8(1): p. 114-125.
    10.Na, J.Y., et al., Understanding solidification of polythiophene thin films during spin-coating: effects of spin-coating time and processing additives. Scientific reports, 2015. 5(1): p. 13288.
    11.Pascual-San-José, E., et al., Blade coated P3HT: non-fullerene acceptor solar cells: a high-throughput parameter study with a focus on up-scalability. Journal of materials chemistry A, 2019. 7(35): p. 20369-20382.
    12.Xue, L., et al., The formation of different structures of poly (3-hexylthiophene) film on a patterned substrate by dip coating from aged solution. Nanotechnology, 2010. 21(14): p. 145303.
    13.O'Connor, B., et al., Anisotropic Structure and Charge Transport in Highly Strain‐Aligned Regioregular Poly (3‐hexylthiophene). Advanced Functional Materials, 2011. 21(19): p. 3697-3705.
    14.Kim, D.H., et al., Surface-induced conformational changes in poly (3-hexylthiophene) monolayer films. Langmuir, 2005. 21(8): p. 3203-3206.
    15.Heimel, G., et al., The interface energetics of self-assembled monolayers on metals. Accounts of Chemical Researchc, 2008. 41(6): p. 721-729.
    16.Faucheux, N., et al., Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 2004. 25(14): p. 2721-2730.
    17.Miozzo, L., A. Yassar, and G. Horowitz, Surface engineering for high performance organic electronic devices: the chemical approach. Journal of Materials Chemistry, 2010. 20(13): p. 2513-2538.
    18.Skountzos, E.N., F. von Wrochem, and V.G. Mavrantzas, Structure and Conformation of a Crystalline P3HT Film Adsorbed on an Alkanethiol Self‐Assembled Monolayer Deposited on Gold. Macromolecular Theory and Simulations, 2020. 29(3): p. 2000010.
    19.Kirschner, J., et al., Driving forces for the self-assembly of graphene oxide on organic monolayers. Nanoscale, 2014. 6(19): p. 11344-11350.
    20.Jang, M., Y.-I. Huh, and M. Chang, Effects of solvent vapor annealing on morphology and charge transport of poly (3-hexylthiophene)(P3HT) films incorporated with preformed P3HT nanowires. Polymers, 2020. 12(5): p. 1188.
    21.Cooper, E. and G.J. Leggett, Influence of tail-group hydrogen bonding on the stabilities of self-assembled monolayers of alkylthiols on gold. Langmuir, 1999. 15(4): p. 1024-1032.
    22.Choi, D., et al., Effects of side-chain interdigitation on stability: an environmentally, electrically, and thermally stable semiconducting polymer. ACS applied materials & interfaces, 2012. 4(2): p. 702-706.
    23.Lepikko, S., et al., Droplet slipperiness despite surface heterogeneity at molecular scale. Nature chemistry, 2024. 16(4): p. 506-513.
    24.Ito, Y., et al., Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. Journal of the American Chemical Society, 2009. 131(26): p. 9396-9404.
    25.Chen, J.-Y., et al., Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of poly (3-hexylthiophene) for field-effect transistor applications. Macromolecules, 2011. 44(8): p. 2883-2892.
    26.Xiao, G., et al., Controlled evaporative self-assembly of poly (3-hexylthiophene) monitored with confocal polarized Raman spectroscopy. Physical Chemistry Chemical Physics, 2012. 14(47): p. 16286-16293.
    27.El-Desawy, M., Characterization and application of aromatic self-assembled monolayers. 2007.
    28.Zhuravlev, L., The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 173(1-3): p. 1-38.
    29.Israelachvili, J.N. and M.L. Gee, Contact angles on chemically heterogeneous surfaces. Langmuir, 1989. 5(1): p. 288-289.
    30.Schrader, A.M., et al., Surface chemical heterogeneity modulates silica surface hydration. Proceedings of the National Academy of Sciences, 2018. 115(12): p. 2890-2895.
    31.Cao, Y., A. Salvini, and M. Camaiti, Current status and future prospects of applying bioinspired superhydrophobic materials for conservation of stone artworks. Coatings, 2020. 10(4): p. 353.
    32.Bredas, J.-L., Relationship between band gap and bond length alternation in organic conjugated polymers. The Journal of chemical physics, 1985. 82(8): p. 3808-3811.
    33.Veerender, P., et al., Probing the annealing induced molecular ordering in bulk heterojunction polymer solar cells using in-situ Raman spectroscopy. Solar energy materials and solar cells, 2014. 120: p. 526-535.
    34.Chaudhary, V., et al., Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode. Journal of Applied Physics, 2017. 122(22).
    35.Lin, R., et al., Spontaneous dissociation of a conjugated molecule on the Si (100) surface. The Journal of chemical physics, 2002. 117(1): p. 321-330.
    36.Dantanarayana, V., et al., Multi–scale Modeling of Bulk Heterojunctions for Photovoltaic Applications.
    37.Ma, B.S., et al., Thermomechanical Behavior of Poly (3-hexylthiophene) Thin Films on the Water Surface. ACS omega, 2022. 7(23): p. 19706-19713.
    38.Rahimi, K., et al., Light absorption of poly (3-hexylthiophene) single crystals. Rsc Advances, 2014. 4(22): p. 11121-11123.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE