簡易檢索 / 詳目顯示

研究生: 許哲綱
Hsu, Che-Kang
論文名稱: 利用雙聚焦型離子束製作次微米尺度之氮化鎵發光二極體光電特性分析
Fabrication and Characterization of Optoelectrical Properties in Sub-micron-GaN-Based LEDs Formed by Focused Ion Beam
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 氮化鎵雙聚焦型離子束奈米薄片
外文關鍵詞: GaN, DB-FIB, Nano-Slice
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三五族材料能隙可藉摻雜而改變,利用此材料製作發光二極體(Light-emitting Diode, LED),其發光波段可以涵蓋紫外光到近紅外光區域,近年來已經應用在許多日常生活用品上,包含隱藏於筆記型電腦之背光源、汽車車燈、戶外大型看板、與室內照明。因氮化鎵材料本身磊晶成長過程中,量子井發光層內部累積自發極化場與壓電極化場,電子電洞波函數分離,降低電子電洞複合機率,造成整體發光效率下降。另外,元件在長時間操作時,發光波長受到熱效應紅移,也限制了LED在生物醫學上應用。
    本研究利用雙聚焦型離子束(Focused Ion Beam, FIB)製作各種次微米之藍光LED,並針對製程參數對於元件外觀製作之影響做探討。有別其他研究團隊利用電子致發光(Cathodoluminescence, CL)量測氮化鎵陣列型奈米柱發光特性分析,此研究設計之薄片型LED可以單獨被拿來利用電激發量測其光電特性。
    在變溫量測系統下,次微米尺寸LED之光電特性可利用光纖收光與半導體參數分析儀來完成。在30 keV加速電壓轟擊下,元件表面受到類似離子佈值而形成許多缺陷、空缺、甚至晶格錯位,因此元件在順偏壓1 V時,表面複合電流從10 pA上升至10 nA。
    另外,透過電激發光光譜量測發現,無論在低溫或常溫量測下,當尺寸接近次微米尺寸之微小化元件,其發光波長峰值在高電流密度下,幾乎是定值。而在小電流下,微小型LED直接呈現紅移。會與傳統LED有這樣的差異性,推斷應該是內部應力受到微小化後釋放所致,而大電流下,則是熱效應(Joule Heating Effect)與能帶填充效應(Band-filling Effect)互相抵制而造成穩定波長。
    最後,利用SRIM模擬軟體分析離子轟擊下氮化鎵材料內部缺陷分佈,並透過光譜量測到之黃光區域做定性探討,發現2.27 eV 與2.11 eV 兩個峰值恰巧對應到與鎵空缺相關受體能隙躍遷。從模擬分析得到在鎵離子轟擊下產生之鎵空缺數量約為氮空缺的1.5倍,因此推估FIB在轟擊時,對氮化鎵材料有明顯影響,了解缺陷產生對於利用FIB製備穿透式顯微鏡試片有很大的幫助。

    Direct wide-bandgap gallium nitride (GaN) and other III-nitride based semiconductors have been used for modern lighting industry due to its capability of various indium compositions, which enables the wavelength covers from violet to near infrared. Light-emitting diodes (LEDs) have attracted considerable attention not only for the general lighting but also for back light units in display applications. Spontaneous polarization and piezoelectricity polarization in multi-quantum wells reduce the coupling efficiency of electrons and holes wavefunctions; and further, the high electrical power density enhancing the internal heating inside the LED causes the wavelength unstable, which limits the biomedical technology.
    In this dissertation, focused ion beam (FIB) was used to prototype traditional LED into sub-micrometer scale. The cathodoluminescence (CL) of InGaN/GaN MQW nanopillars were investigated from previous research, but few researches focused on electrical and optical property under electric pumping. Single slice and rod LEDs were fabricated and measured successfully.
    Temperature-dependent electroluminescence (EL) and property of current-voltage minimized LEDs were investigated. Recombination current increases after ion beam process. This result might come from implantation of 30 KeV accelerated Ga+, creating defect states, vacancies, and even crystal misfits. Nearly constant peak wavelength under high current density was observed in minimized LEDs, whiles redshift occurs at low current density. The redshift is due to strain release after ion beam milling, and nearly constant wavelength might origin from the competition between Joule heating effect and band-filling effect.
    We use the stopping and range of ions in matter (SRIM) to simulate the projected ion range and distinguish the types of vacancies after FIB milling. There are two peaks locate on the yellow luminescence band in EL spectra, and the peak energies are related to optical transition of VGa. The result is consistent with the large number of VGa created during FIB process. This information of defect type is very important for TEM analyses.

    中文摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 vii 表目錄 xii Chapter 1 Introduction 1 1.1 Brief Background 1 1.2 Research Target 4 Chapter 2 Theory and Literature Review 6 2.1 FIB working principle 6 2.1.1 Dual Beam System 6 2.1.2 Liquid Metal Ion Source 9 2.1.3 Profile of FIB System 12 2.1.4 Milling Process 13 2.1.5 Imaging 15 2.1.6 Principle of FIB-induced Deposition 19 2.1.7 Gas-assisting Etching 21 2.2 Related Phenomena during Milling 22 2.2.1 Effect of Incidence Angle 22 2.2.2 Redeposition Effect 24 2.2.3 Amorphous Effect 27 2.3 Bitmap Technique 28 2.4 Nanostructure Fabrication with FIB 30 2.5 Other Methods for Micro Scale InGaN/GaN LEDs 35 Chapter 3 Experiment and Measurement Method 38 3.1 Flow Chart 38 3.2 Material Growth and Preparation 39 3.3 FIB Procedures 41 3.4 FIB Ion Implantation 44 3.5 Analytical Techniques 45 Chapter 4 Results and Discussion: Fabrication of GaN Micro and Nano Structure Formed by FIB 48 4.1 Graphic Designs for FIB 48 4.2 Influence of Process Parameter 51 4.2.1 Morphological Influence of the Beam Overlap in FIB 51 4.2.2 Gas (XeF2) Assisted Focused Ion Beam Etching 54 Chapter 5 Results and Discussion: Electrical and Optical Property of a Few Microscale LED Milled by FIB 56 5.1 Fabrication of Microscale InGaN/GaN Multiple Quantum Well LEDs 56 5.2 Analysis of Electrical Property for FIB-etched (Slice) LEDs 58 5.3 Analysis of Optical Property for FIB-etched (Slice) LEDs 62 5.3.1 Original Defect States in GaN 62 5.3.2 Photoluminescence (PL) of LED Wafer 62 5.3.3 Electroluminescence of Slice and Rod LEDs 65 5.3.4 Discussion of Emission Property of Device after Scaling Down 68 5.4 Light Emission Efficiency of Micro Scale LEDs 71 5.5 Effect of FWHM after Miniaturization 77 5.6 Temperature Dependence of Electroluminescence 83 Chapter 6 Results and Discussion: Part 3- Defect Analysis of Miniaturized Device after Ion Beam Milling 88 6.1 Yellow Luminescence in FIB-etched Devices 88 6.2 TRIM Simulation of Ga Ion Implantation 95 6.3 Electrical Property of Ga+-implanted Schottky Barrier Diode (SBD) 99 Chapter 7 Conclusion 103 7.1 Summary of Current Work 103 7.2 Future Work 105 References 106

    1 Shang-En WU, Tao-Hung HSUEH, Chuan-Pu LIU, Jinn-Kong SHEU, Wei-Chih LAI, and Shoou-Jinn CHANG, “Focused Ion Beam Milled InGaN/GaN Multiple Quantum Well Nanopillars,” Jpn. J. Appl. Phys. 47, 3130 (2008)
    2 Alex A. Volinsky, Larry Rice, Wentao Qin, N. David Theodore, “FIB failure analysis of memory arrays”, Microelectron. Eng. 75, 3 (2004)
    3 David W. Niles, Ronald W. Kee, and Chad Rue, " Full-thickness Backside Circuit Editing for ASICS on Laminated Packages," JMEPEG 19, 819 (2010)
    4 C.A. Volkert, A.M. Minor, “Focused Ion Beam Microscopy and Micromachining,” MRS Bull. 32, 389 (2007)
    5 S. Dhara, C. Y. Lu, C. T. Wu, C. W. Hsu, W. S. Tu, K. H. Chen, Y. L. Wang, L. C. Chen, and Baldev Raj, “Focused Ion Beam Induced Nanojunction and Defect Doping as a Building Block for Nanoscale Electronics in GaN Nanowires,” J. Phys. Chem. C 114, 15260 (2010)
    6 Toshiaki Fujii, Koji Iwasaki, Masanao Munekane, Toshitada Takeuchi, Masakatsu Hasuda, Tatsuya Asahata,Masahiro Kiyohara, Toshiharu Kogure, Yukimitsu Kijima, and Takashi Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15, S286 (2005)
    7 T. Nagata, P. Ahmet, Y. Sakuma, T. Sekiguchi, and T. Chikyow, “GaN nanostructure fabrication by focused-ion-beam-assisted chemical vapor deposition,” Appl. Phys. Lett.87, 013103 (2005)
    8 Jun-ichi FUJITA, Satoshi OKADA, Ryuichi UEKI, Masahiko ISHIDA, Takashi KAITO, and Shinji MATSUI, “Elastic Double Structure of Amorphous Carbon Pillar Grown by Focused-Ion-Beam Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46, 6286 (2007)
    9 Sang-Woo Kim, Masaya Ueda, Mitsuru Funato, and Shigeo Fujita, “Artificial control of ZnO nanodots by ion-beam nanopatterning,” J. Appl. Phys. 97, 104316 (2005)
    10 A Perez, L Bardotti, B Prevel, P Jensen, M Treilleux, P M´elinon, J Gierak, G Faini, and D Mailly, “Quantum-dot systems prepared by 2D organization of nanoclusters preformed in the gas phase on functionalized substrates,” New Journal of Physics 4, 76.1 (2002)
    11 J. Kapsaa, Y. Robach, G. Hollinger, M. Gendry, J. Gierak, D. Mailly, “STM and FIB nano-structuration of surfaces to localize InAs/InP(0 0 1) quantum dots,” Appl. Surf. Sci. 226, 31 (2004)
    12 Masaya UEDA, Sang-Woo KIM, Shizuo FUJITA, and Shigeo FUJITA, “Focused Ion Beam Patterning for Fabrication of Periodical Two-Dimensional Zinc Oxide Nanodot Arrays,” Jpn. J. Appl. Phys. 43, L652 (2004)
    13 D. M. Longo, W. E. Benson, T. Chraska, and R. Hull, “Deep submicron microcontact printing on planar and curved substrates utilizing focused ion beam fabricated printheads,” Appl. Phys. Lett. 78, 981 (2001)
    14 Hong-Wei Li, Dae-Joon Kang, MGBlamire, and Wilhelm T S Huck, “Focused ion beam fabrication of silicon print masters,” Nanotechnology 14, 220 (2003)
    15 Wuxia Li, Stefan Dimov, Georgi Lalev, “Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates,” Microelectron. Eng. 84, 829 (2007)
    16 Ali Ozhan Altun, Jun-Ho Jeong, Jong-Joo Rha, Ki-Don Kim, and Eung-Sug Lee, "Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography," Nanotechnology 18, 465302 (2007)
    17 The Physics of Quantum Information: Quantum Cryptography,Quantum Teleportation, Quantum Computation, Bouwmeester, D., Ekert, A., and Zeilinger, A., Eds., Berlin: Spirnger-Verlag ( 2001)
    18 Single Quantum Dots: Fundamentals, Applications and New Concepts, Michler, P., Ed., Berlin: Spirnger-Verlag (2003)
    19 P. Gnauck, U. Zeile, G. Benner, A. Orchowski, and W-D. Rau, "Focused Ion Beam Preparation Techniques for EFTEM Analysis," Microsc Microanal 9, 872 (2003)
    20 V. N. Tondare, "Quest for high brightness, monochromatic noble gas ion sources," J. Vac. Sci. Technol. A 23, 1498 (2005)
    21 L. Bischoff, "Alloy liquid metal ion sources and their application in mass separated focused ion beams," Ultramicroscopy 103, 59 (2005)
    22 J. L. Hanssen, S. B. Hill, J. Orloff, and J. J. McClelland, “Magneto-Optical-Trap-Based, High Brightness Ion Source for Use as a Nanoscale Probe,” Nano Lett. 8, 2844 (2008)
    23 Q. Ji, X. Jiang, T.-J. King, K.-N. Leung, K. Standiford, and S. B. Wilde, “Improvement in brightness of multicusp-plasma ion source,” J. Vac. Sci. Technol. B 20, 2717 (2002)
    24 Jon Orloff, “High-resolution focused ion beams,” Rev. Sci. Instrum. 64, 1105 (1993)
    25 M. Itou, M. Kasai, T. Kimura, J. Yanagisawa, F. Wakaya, and Y. Yuba, K. Gamo, “Maskless Mn implantation in GaAs using focused Mn ion beam,” Nucl. Instr. and Meth. in Phys. Res. B 206, 1031 (2006)
    26 Steve Reyntjens and Robert Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001)
    27 D. Petit, C. C. Faulkner, S. Johnstone, D. Wood, and R. P. Cowburn, “Nanometer scale patterning using focused ion beam milling,” Rev. Sci. Instrum. 76, 026105 (2005)
    28 A. J. Steckl and I. Chyr, “Focused ion beam micromilling of GaN and related substrate materials (sapphire, SiC, and Si),” J. Vac. Sci. Technol. B 17„2, 362 (1999)
    29 R. J. Young, J. R. Cleaver, and H. Ahmed, “Gas-assisted focused ion beam etching for microfabrication and inspection,” Microelectron. Eng. 11, 409 (1990)
    30 R. J. Young, J. R. Cleaver, and H. Ahmed, “Characteristics of gas‐assisted focused ion beam etching,” J. Vac. Sci. Technol. B 11, 234 (1993)
    31 L. R. Harriott, “Focused-Ion-Beam-Induced Gas Etching,” Jpn. J. Appl. Phys., Part 1 33, 7094 (1995)
    32 P. E. Russell, T. J. Stark, D. P. Griffis, J. R. Phillips, and K. K. Jarausch, “Chemically and geometrically enhanced focused ion beam micromachining,” J. Vac. Sci. Technol. B 16, 2494 (1998)
    33 A. Dutta, Y. R. Wu, and Y. L. Wang, “Gas-assisted focused-ion-beam lithography of a diamond (100) surface,” Appl. Phys. Lett. 75, 2677 (1999)
    34 T. J. Stark, G. M. Shedd, J. Vitarelli, D. P. Griffis, and P. E. Russell, “H2O enhanced focused ion beam micromachining,” J. Vac. Sci. Technol. B 13, 2565 (1995)
    35 T. J. Stark, D. P. Griffis, and P. E. Russell, “Characterization of resist profiles using water enhanced focused ion beam micromachining,” J. Vac. Sci. Technol. B 14, 3990 (1996)
    36 H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities”, Eur. Phys. J. B 48, 3, 291 (2005)
    37 C. Marinelli, M. Bordovsky, L. J. Sargent, M. Gioannini, J. M. Rorison, R. V. Penty, and I. H. White, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076 (2001)
    38 D. A. M. de Winter and J. J. L. Mulders, “Redeposition characteristics of focused ion beam milling for nanofabrication,” J. Vac. Sci. Technol. B 25, 2215 (2007)
    39 Ampere A. Tseng, “Recent Developments in Nanofabrication Using Focused Ion Beams,” Small 1, 924 (2005)
    40 L. FREY, C. LEHRER, and H. RYSSEL, “Nanoscale effects in focused ion beam processing,” Appl. Phys. A 76, 1017 (2003)
    41 A. Lugstein, B. Basnar, G. Hobler, E. Bertagnolli, “Current density profile extraction of focused ion beams based on atomic force microscopy contour profiling of nanodots”, J. Appl. Phys. 92, 4037 (2002)
    42 Shinji Matsui, Takashi Kaito, Jun-ichi Fujita, Masanori Komuro, Kazuhiro Kanda, Yuichi Haruyama, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition”, J. Vac. Sci. Technol. B 18, 3181 (2000)
    43 D. P. Adams, M. J. Vasile, T. M. Mayer, V. C. Hodges, “Focused ion beam milling of diamond: Effects of H2O on yield, surface morphology and microstructure”, J. Vac. Sci. Technol. B 21, 2334 (2003)
    44 Dmitri Litvinov, Sakhrat Khizroev, “Focused ion beams in future nanoscale probe recording”, Nanotechnology 13, 179 (2002)
    45 Hong-Wei Li, Dae-Joon Kang, M G Blamire, Wilhelm T S Huck, “Focused ion beam fabrication of silicon print masters”, Nanotechnology 14, 220 (2003)
    46 H. W. Choia, M. D. Dawson, P. R. Edwards, R. W. Martin, “High extraction efficiency InGaN micro-ring light-emitting diodes”, Appl. Phys. Lett. 83, 4483 (2003)
    47 Shang-En Wu, S. Dhara, Tao-Hung Hsueh, Yi-Feng Lai, Cheng-Yu Wanga, Chuan-Pu Liua, “Surface optical phonon modes in ternary aligned crystalline InGaN/GaN multiquantum-well nanopillar arrays”, J. Raman Spectrospc. 40, 2044 (2009)
    48 Yeonjoon Park, SangJoon Park, Uhn Lee, Sang H. Choi, “Nano-Scale Lateral Milling with Focused Ion Beam for Ultra-Smooth Optical Device Surface”, Recent Patents on Space Technology, 2, 51 (2010)
    49 Bao-Jen Pong, Chi-Hsing Chen, Sheng-Horng Yen, Jin-Fu Hsu, Chun-Ju Tun, Yen-Kuang Kuo, Cheng-Huang Kuo, Gou-Chung Chi, ”Abnormal blue shift of InGaN micro-size light emitting diodes”, Solid-State Electron. 50, 1588 (2006)
    50 Kug-Seung Lee, Chul Huh, Ji-Myon Lee, Eun-Jeong Kang, Seong-Ju Park, “Electrical and Optical Characteristics of InGaN/GaN Microdisk LEDs,” Electrochem. Solid-State Lett. 8, G68 (2005)
    51 M. Nisoli, S. Stagira, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, R. Kofman, “Ultrafast Electronic Dynamics in Solid and Liquid Gallium Nanoparticles,” Phys. Rev. Lett. 78, 3575 (1997)
    52 2P. C. Wu, A. S. Brown, M. Losurdo, G. Bruno, H. D. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90, 103119 (2007)
    53 Nobuyuki Koguchi and Keiko Ishige, “Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive Irradiation of Ga and As Molecular Beams,” Jpn. J. Appl. Phys., Part 1 32, 2052 (1993)
    54 K. Watanabe, N. Koguchi, Y. Gotoh, “Fabrication of GaAs Quantum Dots by Modified Droplet Epitaxy,” Jpn. J. Appl. Phys., Part 2 39, L79 (2000)
    55 J. S. Kim and N. Koguchi, “Near room temperature droplet epitaxy for fabrication of InAs quantum dots,” Appl. Phys. Lett. 85, 5893 (2004)
    56 L. Hong, Z. Lui, X. T. Zhang, S. K. Hark, “Self-catalytic growth of single-phase AlGaN alloy nanowires by chemical vapor deposition,” Appl. Phys. Lett. 89, 193105 (2006)
    57 F. Rose, H. Fujita, H. Kawakatsu, “Real-time observation of FIB-created dots and ripples on GaAs,” Nanotechnology 19, 035301 (2008)
    58 Q. M. Wei, J. Lian, W. Lu, L. M. Wang, “Highly Ordered Ga Nanodroplets on a GaAs Surface Formed by a Focused Ion Beam,” Phys. Rev. Lett. 100, 076103 (2008)
    59 A. Lugstein, B. Basnar, E. Bertagnolli, “Size and site controlled Ga nanodots on GaAs seeded by focused ion beams,” J. Vac. Sci. Technol. B 22, 888 (2004)
    60 V. Callegari and P. M. Nellen, “Mechanisms of nanodot formation under focused ion beam irradiation in compound semiconductors,” J. Appl. Phys. 204, 1665 (2007)
    61 Toshio Ogino and Masaharu Aoki, “Mechanism of Yellow Luminescence in GaN,” Jpn. J. Appl. Phys., Part 1 19, 2395 (1980)
    62 T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55, 9571 (1997)
    63 Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, “‘‘S-shaped’’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73, 1370 (1998)
    64 M. Buongiorno, K. Rapacewicz, and J. Bernholc, “Polarization field effects on the electron-hole recombination dynamics in In0.2Ga0.8N/In1−xGaxN multiple quantum wells,” Appl. Phys. Lett. 71, 3135 (1997)
    65 H. W. Choi, C. W. Jeon, C. Liu, I. M. Watson, and M. D. Dawson, “InGaN nano-ring structures for high-efficiency light emitting diodes,” Appl. Phys. Lett. 86, 021101 (2005)
    66 F. Demangeot, J. Gleize, J. Frandon, and M. A. Renucci, “Optical investigation of micrometer and nanometer-size individual GaN pillars fabricated by reactive ion etching,” J. Appl. Phys. 91, 6520 (2002)
    67 C. Kisielowski, J. Kru¨ger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. R. Weber, “Strain-related phenomena in GaN thin films,” Phys. Rev. A 54, 745 (1996)
    68 Wei Guo, Meng Zhang, Pallab Bhattacharya, and Junseok Heo, “Auger Recombination in III-Nitride Nanowires and Its Effect on Nanowire Light-Emitting Diode Characteristics,” Nano Lett. 11, 1434 (2011)
    69 Emmanouil Kioupakis, Patrick Rinke, Kris T. Delaney, and Chris G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011)
    70 Francesco Bertazzi, Michele Goano, and Enrico Bellotti, “A numerical study of Auger recombination in bulk InGaN,” Appl. Phys. Lett. 97, 231118 (2010)
    71 (a) Bhattacharya, P. Semiconductor Optoelectronic Devices, 2nd ed; Prentice Hall: Englewood Cliffs, NJ, (1996). (b) Piprek, J. Optoelectronic devices: advanced simulation and analysis; Springer: New York, (2005)
    72 H. B. Bebb and E. W. Williams, Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer, Vol. 8, p. 181. (Academic Press, New York, 1972)
    73 M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28, 1928 (1983)
    74 Hooyoung Song, Jin Soak Kim, EunKyu Kim, Yong Gon Seo, and Sung-Min Hwang, "Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique," Nanotechnology 21, 134026 (2010)
    75 Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, "‘‘S-shaped’’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Appl. Phys. Lett. 73, 1370 (1998)
    76 Petr G. Eliseev, Piotr Perlin, Jinhyun Lee, and Marek Osin´ ski, "‘‘Blue’’ temperature-induced shift and band-tail emission in InGaN-based light sources," Appl. Phys. Lett. 71, 569 (1997)
    77 Yu-Hsuan Sun, Yun-Wei Cheng, Szu-Chieh Wang, Ying-Yuan Huang, Chun-Hsiang Chang, Sheng-Chieh Yang, Liang-Yi Chen, Min-Yung Ke, Chi-Kang Li, Yuh-Renn Wu, and JianJang Huang, IEEE Electron Device Lett. 32, 182 (2011)
    78 Wei Lin, Shuping Li, and Junyong Kang, “Near-ultraviolet light emitting diodes using strained ultrathin InN/GaN quantum well grown by metal organic vapor phase epitaxy,” Appl. Phys. Lett. 96, 101115 (2010)
    79 J. I. Pankove and J. A. Hutchby, “Photoluminescence of ion-implanted GaN,” J. Appl. Phys. 47, 5387 (1976)
    80 G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, Su-Huai Wei, M. Asif Khan, and C. J. Sun, “Fundamental optical transitions in GaN,” Appl. Phys. Lett. 68, 2784 (1996)
    81 S. Nagahama, N. Iwasa, M. Senoh, T. Matsushita, Y. Sugimoto, H. Kiyoku, T. Kozaki, M. Sano, H. Matsumura, H. Umemoto, K. Chocho, T. Yanamoto, and T. Mukai, “GaN-Based Light-Emitting Diodes and Laser Diodes, and Their Recent Progress,” phys. stat. sol. (a) 188, No. 1, 1–7 (2001)
    82 L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy,” Mater. Sci. Eng. R 37, 61 (2002)
    83 Michael A. Reshchikov and Hadis Morkoç, “Luminescence properties of defects in GaN,” J. Appl. Phys. 97, 061301 (2005)
    84 T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B 55, 9571 (1997)
    85 Sukit Limpijumnong and Chris G. Van de Walle, “Diffusivity of native defects in GaN,” Phys. Rev. B 69, 035207 (2004)
    86 I. Gorczyca, N. E. Christensen, and A. Svane, “Influence of hydrostatic pressure on cation vacancies in GaN, AlN, and GaAs,” Phys. Rev. B 66, 075210 (2002)
    87 K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, “Observation of Native Ga Vacancies in GaN by Positron Annihilation,” Phys. Rev. Lett. 79, 3030 (1997)
    88 J. Oila, V. Ranki, J. Kivioja, K. Saarinen, and P. Hautoja¨rvi, “Influence of dopants and substrate material on the formation of Ga vacancies in epitaxial GaN layers,” Phys. Rev. B 63, 045205 (2001)
    89 Jo¨rg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69, 503 (1996)
    90 E. F. Schubert, I. D. Goepfert, and J. M. Redwing, “Evidence of compensating centers as origin of yellow luminescence in GaN,” Appl. Phys. Lett. 71, 3224 (1997)
    91 D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, H. Amano, and I. Akasaki, “Properties of the yellow luminescence in undoped GaN epitaxial layers,” Phys. Rev. B 52, 16702 (1995)
    92 Xiao-Lin Hu, Jun-Qian Li, Yong-Fan Zhang, Hao-Hong Li, and Yi Li, “Theoretical analysis on yellow emission of gallium nitride with vacancy defects or impurities,” Theor Chem Acc 123, 521 (2009)
    93 Jayavel P, Udhayasankar M, Kumar J, Asokan K, and Kanjilal D., "Electrical characterisation of high energy 12C irradiated Au/n-GaAs Schottky Barrier Diodes," Nucl Instrum Methods B, 156, 110 (1999)
    94 Sandeep Kumar, Y.S. Katharria, Sugam Kumar, and D. Kanjilal, "Temperature-dependence of barrier height of swift heavy ion irradiated Au/n-Si Schottky structure," Solid-State Electron. 50, 1835 (2006)
    95 S. T. Lai, B. D. N&er, L. Faraone, and A. G. Nassibian, "Characterization of deep-level defects in GaAs irradiated eV electrons.," J. Appl. Phys. 73, 640 (1993)
    96 Ling Xia, Wengang Wu, Yilong Hao, Yangyuan Wang, and Jun Xu, "Characterization of focused-ion-beam-induced damage in n-type silicon using Schottky contact," Appl. Phys. Lett. 88, 152108 (2006)

    無法下載圖示 校內:2016-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE