| 研究生: |
陳家全 Chen, Chia-Chuan |
|---|---|
| 論文名稱: |
脈衝雷射成長黃銅礦結構薄膜之特性與光伏應用研究 Pulsed-laser deposition and characterization of chalcopyrite films for photovoltaic applications |
| 指導教授: |
齊孝定
Qi, Xiaoding |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 黃銅礦結構 、脈衝雷射沉積法 、太陽能電池 |
| 外文關鍵詞: | Chalcopyrite, PLD, CIGS, flexible |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃銅礦結構的銅銦鎵硒(CuIn1-xGaxSe2, CIGS)具有高光吸收係數等優點,特別適合應用於可撓式薄膜型太陽能電池。但是CIGS成份複雜,薄膜成長較爲困難,目前還沒有一種成長方法可以完全達到高純、快速、廉價等要求。本研究嘗試利用脈衝雷射沉積技術(Pulsed Laser Deposition, PLD)成長CIGS薄膜,由於雷射具有超快加熱速率與超高溫的特性,可將靶材的成份按原比例蒸鍍到基板上,即所謂的同成分蒸發,因而特別適合用來成長多組元成份的CIGS薄膜。本論文探討PLD成長參數、元素摻雑對薄膜的相純度、結構以及光電性質的影響,主要結論依薄膜成份分為三個部分概括如下:
(1)未摻雑之CIGS: 以純元素粉末製作比例為Cu:In:Ga:Se=1:0.7:0.3:2的靶材,在燒結溫度500oC持溫10小時,可獲得結晶性良好的CIGS (x0.3)純相。隨後利用PLD在鈉玻璃基板上成長CIGS薄膜,在基板溫度300oC時成長的CIGS薄膜可獲得良好的黃銅礦結構,且EDS成份分析結果證實靶材成分基本上按原比例沉積到基板。在調整雷射能量密度時發現,當能量密度過高(12 J/cm2)時會有氣相成核的情況發生,而且會造成靶材表面有明顯的刻痕,本實驗最合適的雷射能量約為5.5 J/cm2。將脈衝雷射光頻率從1 kHz降低至5 Hz時,薄膜表面會出現大顆微粒,直徑約為100~200 nm。1 kHz與5Hz成長的CIGS薄膜在製作成簡易太陽能電池後,初步測得的光電轉換效率分別為0.23%與0.11%,開路電壓分別為0.32及0.16 V。
(2)摻Na之CIGS: 利用添加Na到自製CIGS靶材的方式,可直接成長CIGS:Na薄膜,以便解決PI基板無法像鈉玻璃基板那樣,在高溫時能提供微量Na離子來增加CIGS的轉換效率。實驗結果發現,添加Na元素(1~10 at%)的CIGS靶材在燒結溫度500oC持溫12小時的製作條件下,可以得到CIGS純相。在基板溫度300oC時,利用CIGS:1 at%Na靶材在可撓式PI基板上成長的薄膜,其結晶性較好且具有純的CIGS相,但如果靶材Na含量過高(>1 at%),則會有二次相出現或薄膜結晶性明顯變差。隨著薄膜中Na含量從1.8 at%增加到7.8 at%,薄膜的能隙會從1.2 eV 增加到1.6 eV,同時載子濃度也隨著增加(10161018 cm-3),進而導致電阻率降低。藉由拉曼光譜分析得知,這是因為用含Na 5 at% 或10 at%靶材成長的薄膜中有二次相CuSe存在的緣故。
(3)過渡金屬取代Ga之CIGS,即CuIn1-xMxSe2 (M=Cr、V、Ti): 利用過渡金屬元素添加進入CuInSe2 方式製作Cu(In0.8M0.2)Se2 (CIMS)靶材,在燒結溫度700oC持溫8小時可獲得CIMS純相靶材。在室溫下PLD成長可以獲得具有微結晶的CIMS薄膜,隨後在200~500oC對薄膜進行退火處理,其中400oC退火可以獲得最佳的結果,晶粒大小從3 nm(室溫成長)增大為19 nm且成份不會因爲在高溫過度揮發而偏離化學計量比太多,在拉曼光譜分析中僅觀察到屬於黃銅礦結構的振動特徵峰,而之前在室溫成長薄膜中出現的CuSe特徵峰已消失。經實驗分析,CIMS薄膜實際成份分別為CuIn0.91Cr0.09Se2、CuIn0.86V0.14Se2與CuIn0.92Ti0.08Se2,其對應的能隙值依序為1.23、1.30與1.36 eV,此結果顯示摻雜微量過渡金屬元素對於優化CuInSe2能隙的效果要比傳統的CuIn0.7Ga0.3Se2來得更加明顯。
Pulsed laser deposition (PLD) was used to grow the chalcopyrite-structured CuIn0.7Ga0.3Se2 (CIGS) films for photovoltaic applications. All the targets for PLD were synthesized from pure elements of Cu, In, Ga and Se by the solid state reaction method. CIGS films grown at 300 oC on the soda-lime-glass (SLG) substrates showed a pure phase with the chalcopyrite structure, which had the bandgap of about 1.25 eV. The films grown with the laser fluence of 5.5 J/cm2 and pulse repetition rate of 1 kHz exhibited best phase-purity and surface morphology (i.e. fewest numbers of large particulates). Because Na diffusion from SLG substrates to the CIGS films was known to enhance the photovoltaic efficiency, sodium was added into the homemade CIGS targets for the growth of CIGS:Na films on the flexible PI substrates which did not contain Na. 1-at% Na doped CIGS films deposited on PI at 300 oC showed a pure phase with a fairly good crystallinity. Higher Na doping led to a poorer crystallinity as well as the occurrence of the secondary phase CuSe. Transition-metal (TM) substituted films, i.e. CuIn1-xMxSe2 (CIMS, M=Cr, V and Ti), were also grown by PLD on SLG at room temperature, which showed the right phase with a very small grain size of 3 nm. The grain size was increased to 19 nm by a post-deposition annealing at 400 oC, which also improved the homogeneity of film composition. Hall-effect measurements revealed that the CIMS films had lower carrier concentration but higher mobility than CIGS films. The bandgap of CIMS films was increased, varying from 1.08 eV in CuInSe2 (CIS) to 1.23 eV in CuIn0.91Cr0.09Se2, 1.30 eV in CuIn0.86V0.14Se2 and 1.36 eV in CuIn0.92Ti0.08Se2. Compared to Ga in CIGS, the TM elements studied in this work were much more effective to increase the bandgap of CIS.
[1] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi (2008), "19.9% efficient ZnO/CdS/CuInGaSe¬2 solar cell with 81.2% fill factor", Progress in Photovoltaics: Research and Applications, 16 (3), pp. 235-239.
[2] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla (2011), "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%", Progress in Photovoltaics: Research and Applications, 19 (7), pp. 894-897.
[3] A. Luque, S. Hegedus, 2003, Handbook of Photovoltaic Science and Engineering, 1st ed., Wiley.
[4] 邱秋燕, 廖曰淳, 楊慕震, 黃渼雯, 羅一玲 (2008), 銅銦鎵硒(CIGS)太陽能電池-非真空製程技術發展簡介, 工業材料雜誌, pp. 79-88.
[5] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari (2013), "Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells", Nature Materials, 12, pp. 1107-1111.
[6] T. Hayashi, T. Minemoto, G. Zoppi, I. Forbes, K. Tanaka, S. Yamada, T. Araki, H. Takakura (2009), "Effect of composition gradient in Cu(In,Al)Se2 solar cells", Solar Energy Materials and Solar Cells, 93 (6-7), pp. 922-925.
[7] R.A. Wibowo, K.H. Kim (2009), "Band gap engineering of RF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application", Solar Energy Materials and Solar Cells, 93 (6-7), pp. 941-944.
[8] D.L. Staebler, C.R. Wronski (1977), "Reversible conductivity changes in discharge‐produced amorphous Si", Applied Physics Letters, 31 (4), pp. 292-294.
[9] J.W. Chu, D. Haneman (1991), "Degradation processes in polycrystalline copper indium diselenide photoelectrochemical cells", Solar Cells, 31 (2), pp. 197-201.
[10] H.J. Moller, 1993, Semiconductor For Solar Cell, London, Artech House.
[11] S. Wagner, J.L. Shay, P. Migliorato, H.M. Kasper (1974), "CuInSe2/CdS heterojunction photovoltaic detectors", Applied Physics Letters, 25 (8), pp. 434-435.
[12] L.L. Kazmerski, F.R. White, G.K. Morgan (1976), "Thin‐film CuInSe2/CdS heterojunction solar cells", Applied Physics Letters, 29 (4), pp. 268-270.
[13] R.A. Mickelsen, W.S. Chen, Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI2 chalcopyrite compounds, in, USA Patent No. 4,335,266, 1983.
[14] R. Mickelsen, W. Chen (1981), "Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell", 15th Photovoltaic Specialists Conference, 1, pp. 800-804.
[15] 林明憲, 2008, 太陽電池技術入門, 全華圖書股份有限公司.
[16] R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, V.E. Lowe (1984), "Polycrystalline thin-film CuInSe2/CdZnS solar cells", Electron Devices, IEEE Transactions on, 31 (5), pp. 542-546.
[17] L.L. Kazmerski, M. Hallerdt, P.J. Ireland, R.A. Mickelsen, W.S. Chen (1983), "Optical properties and grain boundary effects in CuInSe2", Journal of Vacuum Science & Technology A, 1 (2), pp. 395-398.
[18] J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. Schock (1993), "ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance", Photovoltaic Specialists Conference, Conference Record of the Twenty Third IEEE, pp. 364-371.
[19] M.A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield, R. Noufi (1994), "High efficiency Cu(In,Ga)Se2 based solar cells: processing of novel absorber structures", Photovoltaic Energy Conversion, Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 1, pp. 68-75
[20] J.R. Tuttle, J.S. Ward, A. Duda, T.A. Berens, M.A. Contreras, K.R. Ramanathan, A.L. Tennant, J. Keane, E.D. Cole, K. Emery, R. Noufi (1996), "The Performance of Cu(In, Ga)Se2-Based Solar Cells in Conventional and Concentrator Applications", Materials Research Society Symposium Proceedings, 426, pp. 143-151.
[21] R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, R.N. Noufi (1998), "CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors", Solar Energy Materials and Solar Cells, 55 (1–2), pp. 83-94.
[22] J.S. Park, Z. Dong, S. Kim, J.H. Perepezko (2000), "CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction", Journal of Applied Physics, 87 (8), pp. 3683-3690.
[23] F. Abou-Elfotouh, D.J. Dunlavy, T.J. Coutts (1989), "Intrinsic defect states in CuInSe2 single crystals", Solar Cells, 27 (1–4), pp. 237-246.
[24] S.M. Wasim (1986), "Transport properties of CuInSe2", Solar Cells, 16 (0), pp. 289-316.
[25] F. Abou-Elfotouh, L.L. Kazmerski, D.J. Dunlavy (1985), "Corroborative evidence for the existence of selenium vacancies in CuInSe2 crystals", Solar Cells, 14 (2), pp. 197-200.
[26] I. Konovalov (2004), "Material requirements for CIS solar cells", Thin Solid Films, 451–452 (0), pp. 413-419.
[27] M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Lindner, M.C. Lux-Steiner, C.H. Fischer, T.P. Niesen, F. Karg (2004), "Determination of the band gap depth profile of the penternary Cu(In(1-x)Gax)(SySe1-y)2 chalcopyrite from its composition gradient", Journal of Applied Physics, 96 (7), pp. 3857-3860.
[28] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi (2005), "SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1−xGax)Se2 solar cells", Progress in Photovoltaics: Research and Applications, 13 (3), pp. 209-216.
[29] S.-H. Wei, S.B. Zhang, A. Zunger (1998), "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties", Applied Physics Letters, 72 (24), pp. 3199-3201.
[30] P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, W.N. Shafarman (2002), "CuIn1−xAlxSe2 thin films and solar cells", Journal of Applied Physics, 91 (12), pp. 10153-10156.
[31] S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, W.N. Shafarman (2002), "High-efficiency solar cells based on Cu(InAl)Se2 thin films", Applied Physics Letters, 81 (7), pp. 1350-1352.
[32] J. Olejníček, C.A. Kamler, S.A. Darveau, C.L. Exstrom, L.E. Slaymaker, A.R. Vandeventer, N.J. Ianno, R.J. Soukup (2011), "Formation of CuIn1-xAlxSe2 thin films studied by Raman scattering", Thin Solid Films, 519 (16), pp. 5329-5334.
[33] F. Kessler, D. Rudmann (2004), "Technological aspects of flexible CIGS solar cells and modules", Solar Energy, 77 (6), pp. 685-695.
[34] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock (2000), "Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films", Thin Solid Films, 361–362 (0), pp. 161-166.
[35] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H.W. Schock (1996), "Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films", Solar Energy Materials and Solar Cells, 41–42 (0), pp. 335-343.
[36] R. Kimura, T. Nakada, P. Fons, A. Yamada, S. Niki, T. Matsuzawa, K. Takahashi, A. Kunioka (2001), "Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films", Solar Energy Materials and Solar Cells, 67 (1–4), pp. 289-295.
[37] A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.J. Haug, M. Kälin, D. Rudmann, A.N. Tiwari (2004), "Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells", Progress in Photovoltaics: Research and Applications, 12 (2-3), pp. 93-111.
[38] K. Granath, M. Bodegård, L. Stolt (2000), "The effect of NaF on Cu(In,Ga)Se2 thin film solar cells", Solar Energy Materials and Solar Cells, 60 (3), pp. 279-293.
[39] K. Otte, L. Makhova, A. Braun, I. Konovalov (2006), "Flexible Cu(In,Ga)Se2 thin-film solar cells for space application", Thin Solid Films, 511-512, pp. 613-622.
[40] W.N. Shafarman, J.E. Phillips (1996), "Direct current-voltage measurements of the Mo/CuInSe2 contact on operating solar cells", Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE, pp. 917-919.
[41] J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki (1995), "Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells", Thin Solid Films, 260 (1), pp. 26-31.
[42] L. Assmann, J.C. Bernède, A. Drici, C. Amory, E. Halgand, M. Morsli (2005), "Study of the Mo thin films and Mo/CIGS interface properties", Applied Surface Science, 246 (1–3), pp. 159-166.
[43] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F.V. Kurdesau, A.N. Tiwari, M. Döbeli (2005), "Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells", Thin Solid Films, 480–481 (0), pp. 433-438.
[44] D. Hariskos, S. Spiering, M. Powalla (2005), "Buffer layers in Cu(In,Ga)Se2 solar cells and modules", Thin Solid Films, 480–481 (0), pp. 99-109.
[45] M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites (2003), "ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency", Photovoltaic Energy Conversion, Proceedings of 3rd World Conference, 1, pp. 570-573.
[46] U. Rau, H.W. Schock (1999), "Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges", Appl. Phys. A, 69 (2), pp. 131-147.
[47] R. Schaffler, H.W. Schock (1993), "High mobility ZnO:Al thin films grown by reactive DC magnetron sputtering", Photovoltaic Specialists Conference, Conference Record of the Twenty Third IEEE, pp. 1026-1030.
[48] V.K. Kapur, A. Bansal, P. Le, O. Asensio, N. Shigeoka (2003), "Non-vacuum processing of CIGS solar cells on flexible polymeric substrates", Photovoltaic Energy Conversion,Proceedings of 3rd World Conference, 1, pp. 465-468.
[49] D. Rudmann, D. Brémaud, H. Zogg, A.N. Tiwari (2005), "Na incorporation into Cu(In,Ga)Se2 for high-efficiency flexible solar cells on polymer foils", Journal of Applied Physics, 97 (8), pp. 0849031-0849035.
[50] K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla (2003), "Diffusion barriers for CIGS solar cells on metallic substrates", Thin Solid Films, 431–432 (0), pp. 392-397.
[51] T. Satoh, Y. Hashimoto, S.-i. Shimakawa, S. Hayashi, T. Negami (2003), "Cu(In,Ga)Se2 solar cells on stainless steel substrates covered with insulating layers", Solar Energy Materials and Solar Cells, 75 (1–2), pp. 65-71.
[52] M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, R. Noufi (1997), "On the role of Na and modifications to Cu(In,Ga)Se2
absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells", Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE, pp. 359-362.
[53] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H.W. Schock (2009), "The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates", Thin Solid Films, 517 (7), pp. 2187-2190.
[54] S. Ishizuka, A. Yamada, M.M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, S. Niki (2009), "Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films", Journal of Applied Physics, 106 (3), pp. 0349081-0349086.
[55] V.K. Kapur, A. Bansal, P. Le, O. Asensio, N. Shigeoka, Non-vacuum processing of CIGS solar cells on flexible polymeric substrates, in: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 465-468 Vol.461.
[56] D.B. Chrisey, G.K. Hubler, 1994, Pulsed Laser Deposition of Thin Films, 1st ed., New York, Wiley-Interscience.
[57] B. Farkas, J. Budai, I. Kabalci, P. Heszler, Z. Geretovszky (2008), "Optical characterization of PLD grown nitrogen-doped TiO2 thin films", Applied Surface Science, 254 (11), pp. 3484-3488.
[58] R. Teghil, A. De Bonis, A. Galasso, P. Villani, A. Santagata (2007), "Femtosecond pulsed laser ablation deposition of tantalum carbide", Applied Surface Science, 254 (4), pp. 1220-1223.
[59] C. Ristoscu, G. Socol, C. Ghica, I. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, C. Fotakis (2006), "Femtosecond pulse shaping for phase and morphology control in PLD: Synthesis of cubic SiC", Applied Surface Science, 252 (13), pp. 4857-4862.
[60] A. Szekeres, Z. Fogarassy, P. Petrik, E. Vlaikova, A. Cziraki, G. Socol, C. Ristoscu, S. Grigorescu, I.N. Mihailescu (2011), "Structural characterization of AlN films synthesized by pulsed laser deposition", Applied Surface Science, 257 (12), pp. 5370-5374.
[61] R. Teghil, L. Dalessio, A. Debonis, D. Ferro, A. Galasso, G. Lanza, A. Santagata, P. Villani, D. Sordelet (2009), "Ultra-short pulse laser ablation of Al70Cu20Fe10 alloy: Nanoparticles generation and thin films deposition", Thin Solid Films, 517 (6), pp. 1880-1886.
[62] F. Garrelie, A.S. Loir, C. Donnet, F. Rogemond, R. Le Harzic, M. Belin, E. Audouard, P. Laporte (2003), "Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological applications", Surface and Coatings Technology, 163–164 (0), pp. 306-312.
[63] M.-G. Tsai, H.-T. Tung, I.-G. Chen, C.-C. Chen, Y.-F. Wu, X. Qi, Y. Hwu, C.-Y. Lin, P.-H. Wu, C.-W. Cheng (2013), "Annealing Effect on the Properties of Cu(In0.7Ga0.3)Se2 Thin Films Grown by Femtosecond Pulsed Laser Deposition", Journal of the American Ceramic Society, 96 (8), pp. 2419-2423.
[64] A. Tverjanovich, E.N. Borisov, E.S. Vasilieva, O.V. Tolochko, I.E. Vahhi, S. Bereznev, Yu.S. Tveryanovich (2006), "CuInSe2 thin films deposited by UV laser ablation", Solar Energy Materials & Solar Cells, 90, pp. 3624-3632.
[65] P. Victor, J. Nagaraju, S.B. Krupanidhi (2000), "Pulsed excimer laser ablated copper indium diselenide thin films", Solid State Communications, 116, pp. 649-653.
[66] S.L. J. Levoska, F. Wang and 0. Kusmartseva, Pulsed laser ablation deposition of CuInSe2 and CuIn1-xGaxSe2 thin films, in: Physica Scripta, 1994, pp. 244-247.
[67] R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, N. Ibris, A.M. Salvi, A. Santagata, P. Villani (2009), "Nanoparticles and Thin Film Formation in Ultrashort Pulsed Laser Deposition of Vanadium Oxide", The Journal of Physical Chemistry A, 113 (52), pp. 14969-14974.
[68] A. De Bonis, A. Santagata, M. Sansone, J.V. Rau, T. Mori, R. Teghil (2013), "Femtosecond pulsed laser ablation of molybdenum carbide: Nanoparticles and thin film characteristics", Applied Surface Science, 278 (0), pp. 321-324.
[69] U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock (2001), "Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance", Solar Energy Materials and Solar Cells, 67 (1–4), pp. 137-143.
[70] C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, J.J. Moore (1998), "Synthesis and processing of a Cu-In-Ga-Se sputtering target", Thin Solid Films, 332 (1), pp. 340-344.
[71] N. Zhang, D.M. Zhuang, G. Zhang (2010), "An investigation on preparation of CIGS targets by sintering process", Materials Science and Engineering: B, 166 (1), pp. 34-40.
[72] S. Ando, S. Endo, T. Tsukamoto, Y. Makita (1998), "Preparation of CuInSe2 thin films by pulsed-laser ablation technique using CuInSe2 bulk crystal targets", Proc. SPIE : Laser Processing of Materials and Industrial Application, 3550, pp. 156-168.
[73] P. Victor, J. Nagaraju, S.B. Krupanidhi (2000), "Pulsed excimer laser ablated copper indium diselenide thin films", Solid State Communications, 116 (12), pp. 649-653.
[74] E. Millon, J. Perriere, R.M. Defourneau, D. Defourneau, O. Albert, J. Etchepare (2003), "Femtosecond pulsed-laser deposition of BaTiO3", Applied Physics A: Materials Science & Processing, 77 (1), pp. 73-80.
[75] R. Teghil, L. D’Alessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet (2003), "Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals", Applied Surface Science, 210 (3-4), pp. 307-317.
[76] X.L. Tong, D.S. Jiang, Z.M. Liu, M.Z. Luo, Y. Li, P.X. Lu, G. Yang, H. Long (2008), "Structural characterization of CdS thin film on quartz formed by femtosecond pulsed laser deposition at high temperature", Thin Solid Films, 516 (8), pp. 2003-2008.
[77] T. Salminen, M. Hahtala, I. Seppälä, P. Laukkanen, T. Niemi (2010), "Picosecond pulse laser ablation of yttria-stabilized zirconia from kilohertz to megahertz repetition rates", Appl. Phys. A, 101 (4), pp. 735-738.
[78] Y. Nakata, T. Okada, M. Maeda (2002), "Deposition of ZnO film by pulsed laser deposition at room temperature", Applied Surface Science, 197–198 (0), pp. 368-370.
[79] R. Adhi Wibowo, E. Soo Lee, B. Munir, K. Ho Kim (2007), "Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films", physica status solidi (a), 204 (10), pp. 3373-3379.
[80] E.P. Zaretskaya, V.F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B. Zalesski, O.V. Ermakov (2003), "Raman spectroscopy of CuInSe2 thin films prepared by selenization", Journal of Physics and Chemistry of Solids, 64 (9-10), pp. 1989-1993.
[81] Y.M. Shin, D.H. Shin, J.H. Kim, B.T. Ahn (2011), "Effect of Na doping using Na2S on the structure and photovoltaic properties of CIGS solar cells", Current Applied Physics, 11 (1, Supplement), pp. S59-S64.
[82] S. Roy, P. Guha, S.N. Kundu, H. Hanzawa, S. Chaudhuri, A.K. Pal (2002), "Characterization of Cu(In,Ga)Se2 films by Raman scattering", Materials Chemistry and Physics, 73 (1), pp. 24-30.
[83] Y.H. Jo, B.C. Mohanty, Y.S. Cho (2010), "Enhanced electrical properties of pulsed laser-deposited CuIn0.7Ga0.3Se2 thin films via processing control", Solar Energy, 84 (12), pp. 2213-2218.
[84] C. Rincón, F.J. Ramírez (1992), "Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry", Journal of Applied Physics, 72 (9), pp. 4321-4324.
[85] N.N. Syrbu, M. Bogdanash, V.E. Tezlevan, I. Mushcutariu (1997), "Lattice vibrations in CuIn1−xGaxSe2 crystals", Physica B: Condensed Matter, 229 (2), pp. 199-212.
[86] J.H. Park, I.S. Yang, H.Y. Cho (1994), "Micro-Raman spectroscopy in polycrystalline CuInSe2 formation", Appl. Phys. A, 58 (2), pp. 125-128.
[87] D.W. Shin, R.K. Gupta, W.K. Choi, Y.S. Cho, S.J. Yoon, J.-W. Choi (2009), "Dependence of Processing Parameters on Structural Properties and Microstructures of Pulsed Laser Deposited LiMn2O4 Thin Films", Japanese Journal of Applied Physics, 48 (7R), pp. 075501.
[88] L. Zhang, Q. He, W.-L. Jiang, F.-F. Liu, C.-J. Li, Y. Sun (2009), "Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films", Solar Energy Materials and Solar Cells, 93 (1), pp. 114-118.
[89] G. Dagan, F. Abou-Elfotouh, D.J. Dunlavy, R.J. Matson, D. Cahen (1990), "Defect level identification in copper indium selenide (CuInSe2) from photoluminescence studies", Chemistry of Materials, 2 (3), pp. 286-293.
[90] H.-J. Ko, G.-H. Lee, H.-J. Kim, M.-S. Han, C.-H. Jeong, J.-H. Lee, H.-S. Kim, J.-H. Kim, K.-B. Kim, S.-H. Lee (2011), "Investigation of high-quality CuInSe2 films with various Cu/In ratios", Journal of Crystal Growth, 322 (1), pp. 91-94.
[91] E.F. Schubert, 2006, Light-Emitting Diodes, 2nd ed., Cambridge University Press
[92] W. Shockley (1949), "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors", Bell System Technical Journal, 28 (3), pp. 435-489.
[93] R.J. Stirn (1972), " Junction characteristics of Si solar cells", Proceedings of the 9th IEEE Photo. Spec. Conference. , pp. 77-82.
[94] Y. Chen, X. Wang, D. Li, R. Hong, H. Shen (2011), "Parameters extraction from commercial solar cells I–V characteristics and shunt analysis", Applied Energy, 88 (6), pp. 2239-2244.
[95] R. Sakdanuphab, C. Chityuttakan, A. Pankiew, N. Somwang, K. Yoodee, S. Chatraphorn (2011), "Growth characteristics of Cu(In,Ga)Se2 thin films using 3-stage deposition process with a NaF precursor", Journal of Crystal Growth, 319 (1), pp. 44-48.
[96] S. Ye, X. Tan, M. Jiang, B. Fan, K. Tang, S. Zhuang (2010), "Impact of different Na-incorporating methods on Cu(In,Ga)Se2 thin film solar cells with a low-Na substrate", Appl. Opt., 49 (9), pp. 1662-1665.
[97] W.-J. Tsai, C.-H. Tsai, C.-H. Chang, J.-M. Ting, R.-R. Wang (2010), "Addition of Na into CuInS2 thin film via co-evaporation", Thin Solid Films, 519 (5), pp. 1712-1716.
[98] D. Rudmann, A.F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A.N. Tiwari, G. Bilger (2004), "Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation ", Applied Physics Letters, 84 (7), pp. 1129-1131.
[99] L. Kronik, D. Cahen, H.W. Schock (1998), "Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance", Advanced Materials, 10 (1), pp. 31-36.
[100] D. Rudmann, G. Bilger, M. Kaelin, F.J. Haug, H. Zogg, A.N. Tiwari (2003), "Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films", Thin Solid Films, 431-432, pp. 37-40.
[101] Z. Zhang, J. Li, M. Wang, M. Wei, G. Jiang, C. Zhu (2010), "Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films", Solid State Communications, 150 (47–48), pp. 2346-2349.
[102] M.J. Kim, S.H. Cho, S.H. Lee, S.G. Lee, S.H. Sohn (2011), "A study of CuGaSe2 thin film growth from multilayered precursors", Current Applied Physics, 11 (1, Supplement), pp. S93-S98.
[103] L. Zhang, F.F. Liu, F.Y. Li, Q. He, B.Z. Li, C.J. Li (2012), "Structural, optical and electrical properties of low-temperature deposition Cu(InxGa1−x)Se2 thin films", Solar Energy Materials and Solar Cells, 99, pp. 356-361.
[104] J.R. Tuttle, D.S. Albin, R. Noufi (1989), "Characterization of thin film CuInSe2 and CuGaSe2: The existence and identification of secondary phases", Solar Cells, 27 (1–4), pp. 231-236.
[105] R. Shannon (1976), "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A, 32 (5), pp. 751-767.
[106] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse (2006), "An XPS study on the surface reduction of V2O5(001) induced by Ar+ ion bombardment", Surface Science, 600 (17), pp. 3512-3517.
校內:2019-08-20公開