| 研究生: |
王瑋傑 Wang, Wei-Chieh |
|---|---|
| 論文名稱: |
元件尺寸對於n型通道橫向擴散金氧半場效電晶體熱載子可靠度之影響 The Effect of Device Dimension on Hot Carrier Reliability of n-type LDMOS Transistors |
| 指導教授: |
陳志方
Chen, Jone-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | n型通道 、可靠度 、熱載子 |
| 外文關鍵詞: | charge pumping, interface traps, oxide traps, LDMOS, hot carrier |
| 相關次數: | 點閱:100 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要目的是對不同元件尺寸n型通道橫向擴散金氧半場效電晶體(LDMOSFET)之元件特性及熱載子可靠度,做一個初步的研究與探討。本論文使用的元件主要有三個尺寸參數:L (通道長度)、b (閘極控制的漂移區長度)、S1(漂移區長度)。
對元件特性來說,通道長度和閘極控制漂移區長度的影響比漂移區長度來的重要。接著我們選擇一個典型的元件尺寸(L/b/S1=0.5/0.7/0.4微米),進行定電壓的熱載子stress實驗並討論熱載子退化現象和退化機制。藉由TCAD模擬以及charge pumping的分析,在不同stress條件下之退化機制可被完整的討論和統整,其中包括退化原因(接面陷阱(Nit)或是電荷捕陷(Not))以及元件退化的位置(通道或是漂移區部分)。
此外,元件尺寸對於元件熱載子可靠度的影響也會討論。根據我們的研究,經由TCAD模擬得知的電子和電洞injection機率大小是用來判定退化趨勢的重要指標。對元件生命期(lifetime)來說,漂移區長度(S1)的影響很微小,而不管是增加通道長度(L)或是閘極控制的漂移區長度(b),都會使元件生命期增大。
最後,我們可以對於元件效能(performance)做ㄧ些簡單的結論。元件生命期的增加會導致線性電流(Id(lin))和飽和電流(Id(sat))的降低,其中線性電流降的比飽和電流還多,此外生命期增加也會同時提高off breakdown電壓和on breakdown電壓,但是對導通電壓(Vt)來說沒有什麼影響。因此,根據我們對原件的不同需求,必須選擇一個適當的元件尺寸來達到我們設定的目標。
In this thesis, device characteristics and hot carrier reliability of n-type LDMOS transistors with different device dimension are investigated. The device used in this thesis has three main layout parameters L, b, and S1, which corresponds to channel length, length of drift region inside gate, and length of drift region outside gate, respectively.
As for device characteristics, the effect of parameters of L and b is more significant than that of parameter S1. Then we choose a typical device dimension L/b/S1=0.5μm/0.7μm/0.4μm to perform constant voltage hot carrier stress and discuss the hot carrier degradation phenomenon and mechanism. By means of TCAD simulation and charge pumping analysis, device degradation mechanisms are discussed and summarized, including trap properties (interface traps (Nit) and/or oxide traps (Not)) and damage location (channel and/or drift region) under various stress conditions.
Besides, effects of device dimension (L, b, and S1) on hot carrier reliability are investigated. According to our research, TCAD simulation suggests electron and hole injection are good indicators to estimate the trend of device degradation. As for devices lifetime, the effect of parameter S1 is little and the longer parameters of L or b are, the higher lifetime is.
Finally, we can make simple conclusions about device performance as following. Improvement in lifetime causes more decreases of Id(lin) than Id(sat) on performance and results in increases of off-breakdown voltage (Vbd_dss) and on-breakdown voltage (Vbd_on) but has little effect on VT. Therefore, based on the purpose of a device, we should choose a specific device dimension so as to meet our expectation.
[1] B.J. Baliga, “An overview of smart power technology,” IEEE Elect. Dev., Vol.38, pp. 1568 (1991).
[2] C. Contiero, P. Galbiati, and M. Palmieri, “Characteristics and applications of a 0.6μm Bipolar-CMOS-DMOS technology combing VLSI nonvolatile memories,” IEDM Tech. Dig., pp. 465 (1996).
[3] C. Y. Tsai, et al., “16–60 V rated LDMOS show advanced performance in an 0.72 μm evolution BiCMOS power technology,” IEDM Tech. Dig., pp. 367-370 (1997).
[4] V. Parthasarathy, et al., “A 33 V, 0.25 mΩ*cm2 n-channel LDMOS in a 0.65 μm smart-power technology for 20-30 V operation,” ISPSD, pp. 61-64 (1998).
[5] J. A. Van der Pol, et al., “A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications,” ISPSD, pp. 327-330 (2000).
[6] T. Terashima, et al., “Multi-voltage device integration technique for 0.5μm BiCMOS and DMOS process,” ISPSD, pp. 331-334 (2000).
[7] Y. Kawagushi, et al., “0.6 μm BiCMOS-based 15 and 25 V LDMOS for analog applications,” ISPSD, pp. 169-172 (2001).
[8] P. Moens, et al., “I3T80: A 0.35 μm based system-on-chip technology for 42 V battery automotive applications,” Proc. Int. Symp. Power Semiconductor Dev., pp. 225-228 (2002).
[9] R. Versari, A. Pieracci, S. Manzini, C. Contiero, and B. Ricco, “Hot-carrier reliability in submicron LDMOS transistors,” IEDM Tech. Dig., pp. 371 (1997).
[10] R. Versari, A. Pieracci, “Experimental study of hot-carrier effects in LDMOS transistors,” IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1228 (1999).
[11] Y. Rey-Tauriac, J. Badoc, B. Reynard, R. A. Bianchi, D. Lachenal, A. Bravaix, “Hot-carrier reliability of 20V MOS transistors in 0.13 μm CMOS technology,” Microelectronics & Reliability, vol. 45, pp. 1349-1354 (2005).
[12] A. W. Ludikhuize, M. Slotboom, A. Nezar, N. Nowlin, and R. Brock, “Analysis of hot-carrier-induced degradation and snapback in submicron 50V lateral MOS transistors,” ISPSD, pp. 53 (1997).
[13] Tahui Wang, Chimoon Huang, P. C. Chou, Steve S.-S. Chung, Tse-En Chang, “Effects of Hot Carrier Induced Interface State Generation in Submicron LDD MOSFET’s,” IEEE Tran. Elect. Dev., Vol. 41, No. 9 (1994).
[14] S. Aresu, W. De Ceuninck, G. Van den bosch et. al., “Evidence for source side injection hot carrier effects on lateral DMOS transistors,” Microelectronics & Reliability, vol.44, pp. 1621 (2004).
[15] Philip L. Hower, “Safe Operating Area-a New Frontier in LDMOS Design, ” ISPSD, pp. 1-8 (2002).
[16] Zhilin Sun, Weifeng Sun, Longxing Shi, “A review of safe operation area,” Microelectronics Journal, pp. 1-7 (2005).
[17] P. Hower, J. Lin, S. Haynie, S. Paiva, R. Shaw, N. Hepfinger, “Safe operating area considerations in LDMOS transistors,” ISPSD, pp.55 (1999).
[18] P.L. Hower, J. Lin, and Steve Merchant, “Snapback and safe operating area of Ldmos transistors,” IEDM Tech. Dig., pp. 193-196 (1999).
[19] L. Labate, S. Manzini, and R. Roggero, “Hot-Hole-Induced dielectric breakdown in LDMOS transistors,” IEEE Trans. Elect. Dev., vol. 50, no. 2, pp. 372 (2003).
[20] Y. Kamakura, H. Utsunomiya, T. Tomita, K. Umeda, and K. Taniguchi, “Investigations of hot-carrier-induced breakdown of thin oxides,” IEDM Tech. Dig., Dec., pp. 81-84 (1997).
[21] Y. Nishioka, Y. Ohji, and T. Ma, “Gate-oxide breakdown accelerated by large drain current in n-channel MOSFET’s,” IEEE Elect. Dev. Lett., vol. 12, pp. 134-136 (1991).
[22] C. Y. Chang and S. M. Sze, “ULSI Technology,” (1996).
[23] R. A. Chapman et al., “An 0.8 μm CMOS Technology for High Performance Logic Applications,” IEDM Tech. Dig., pp. 362 (1987).
[24] Stanley Wolf, “Silicon Processing for the VLSI Era,” Volume 3: The Submicron MOSFET (1995).
[25] C. Hu, S. C. Tam, F.-C. Hsu, P. K. Ko, T.-Y. Chan and K. W. Terrill, “Hot-electron-induced MOSFET degradation – model, monitor, and improvement,” IEEE Trans. Elect. Dev., vol. 32, no. 2, pp. 375 (1985).
[26] M. L. Chen, C. W. Leung, et. al., “Suppression of hot-carrier effects in submicrometer CMOS technology,” IEEE Tran. Elect. Dev., Vol. 35, pp. 2210 (1988).
[27] D. Brisbin, A. Strachan, and P. Chaparala, “Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications,” IRPS, pp. 105 (2002).
[28] P. Mones, G. Van den bosch, et. al., “Hot hole degradation effects in lateral nDMOS transistors,” IEEE Trans. Elect. Dev., vol. 51, no. 10, pp. 1704 (2004).
[29] 國立成功大學論文 Characteristics and Hot Carrier Reliability of n-channel Lateral Diffused Metal Oxide Semiconductor (LDMOS) Transistors with Different NDD Dosage by K. S. Tian.
[30] P. Mones, M. Tack, R. Degraeve, and G. Groeseneken, “A novel hot-hole injection degradation model for lateral nDMOS transistors,” IEDM Tech. Dig., pp. 877 (2001).
[31] E. Takeda, C. Yang,A. Miura-Hamada, “Hot-carrier effects in MOS Devices,” Academic Press (1995).
[32] Ashot Melik-Martirosian and T. P. Ma, “Improved charge-pumping method for Lateral Profiling of interface traps and oxide charge in MOSFET Devices,” IEDM, pp. 93-96 (1999).
[33] Dieter K. Schroder, “Semiconductor Material and Device Characterization,” second edition.
[34] C. C. Cheng, K. C. Tu, and Tahui Wang, “Investigation of Hot Carrier Degradation Modes in LDMOS by Using A Novel Three-region Charge Pumping Technique,” IEEE IRPS, pp. 334-337 (2006).
[35] C. C. Cheng, J. F. Lin, T. Wang, T. H. Hsieh, J. T. Tzeng, Y. C. Jong, R. S. Liou, S. C. Pan, and S. L. Hsu, “Physics and characterization of various hot-carrier degradation modes in LDMOS by using a novel three-region charge pumping technique,” IEEE TDMR, vol. 6, NO. 3, pp. 358-362 (2006).