簡易檢索 / 詳目顯示

研究生: 張祐倫
Chang, Yu-Lun
論文名稱: 主鏈含芘之電洞緩衝聚亞胺: 合成、鑑定及在高分子發光二極體之應用
Synthesis, Characterization and Hole-Buffering Application of Pyrene-Containing Polyimines
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 113
中文關鍵詞: 高分子發光二極體聚亞胺電洞緩衝濕式製程
外文關鍵詞: PLEDs, polyimine, pyrene, hole-buffering, solution process
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(PLED)是藉由從陽極及陰極注入電洞及電子,並在發光層中再結合進而放光。因此,載子注入及傳輸速率的平衡是影響電流效率最重要的因素。然而在大部分的有機材料中,電洞傳輸速度通常較電子傳輸速度快,造成元件發光層內的載子不平衡,也因此導致電流效率不高。因此降低電洞的傳輸速率則是讓有機發光二極體元件效率上升的有效方法之一。
    本研究成功利用Suzuki coupling以及亞胺聚合反應分別合成出兩種新型的高分子(PPI-1、PPI-2),藉由親電子性的亞胺基團(Imine Group)來改變芘(Pyrene)的載子傳導特性,使HOMO能階降低並將其導入多層元件作為電洞緩衝材料。以核磁共振光譜(1H NMR)、元素分析儀(EA)、鑑定其結構,並分析其熱性質、光學性質、電化學性質、膜態及元件特性。兩高分子擁有高熱裂解溫度(Td > 300 oC)、PPI-2有高玻璃轉移溫度(Tg > 100 oC);從循環伏安法可以計算出PPI-1及PPI-2之HOMO/LUMO能階分別為-5.84/-2.46 eV及-5.63/-2.42 eV。以旋轉塗佈法將PPI-1及PPI-2塗佈於電洞注入層(PEDOT:PSS)上作為電洞緩衝層(HBL)製備多層元件[ITO/PEDOT:PSS/HBL/SY/LiF/Al],PPI-1元件與PPI-2元件最大亮度分別為19,324 cd/m2及22,401 cd/m2,最大電流效率分別為7.9 cd/A及8.0 cd/A,表現優於無加入電洞緩衝材料之元件[ITO/PEDOT:PSS/SY/LiF/Al] (10,818 cd/m2, 2.5 cd/A)。
    根據研究結果顯示,作為元件之電洞緩衝層的應用上,PPI-2元件之亮度及效率優於PPI-1元件且元件色度不會偏移。總結PPI-1與PPI-2皆擁有電洞緩衝的特性,大幅提升元件之表現,並且能以濕式製程的方式塗佈製作,在電洞緩衝材料的應用上具有發展潛力。

    Two new polyimines PPI-1 and PPI-2 have been synthesized by polycondensation plus Suzuki coupling reaction and applied as hole-buffering layer (HBL) to enhance emission efficiency of polymer light-emitting diodes (PLEDs). Both polymers are thermally stable (Td > 300 oC, Tg of PPI-2 >100 oC) owing to rigid pyrene backbone. Moreover, both PPI-1 and PPI-2 contain imine (azomethine) groups in main chain, which can lower the HOMO levels to improve hole-buffering ability. Multilayer PLEDs (ITO/PEDOT:PSS/HBL/SY/LiF/Al) have been fabricated using spin-coated PPI-1 and PPI-2 as HBL. Optimal maximum luminance and maximum current efficiency of the PPI-1-based device were 19,324 cd/m2 and 7.9 cd/A), whereas those of PPI-2-based device were 22,401 cd/m2 and 8.0 cd/A, respectively. Both are superior to the performance of device without the HBL (10,818 cd/m2, 2.5 cd/A). On the other hand, PPI-2-based device is superior to PPI-1-based device in terms of color purity as expressed in stable CIE coordinates. The results indicate that hole-buffer is a significant factor for efficient PLEDs and both PPI-1 and PPI-2 are potential hole-buffering materials for enhancing device performance of electroluminescent devices.

    摘要 I 誌謝 XIV 目錄 XVI 流程目錄 XIX 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1. 前言 1 1-2. 理論基礎 4 1-2-1. 共軛導電高分子特性[4] 4 1-2-2. 螢光理論 5 1-2-3. 影響螢光強度之要點 8 1-2-4. 能量機制[7, 8] 11 1-2-5. 有機共軛材料的激發態[11, 12] 14 1-3. 元件發光原理[14-17] 16 1-4. 元件結構 18 1-4-1. 單層元件[20, 21] 18 1-4-2. 多層元件[22] 20 1-5. 有機發光二極體的效率[22, 23] 22 1-5-1. 影響有機發光二極體效率的參數 22 1-5-2. 增進載子平衡的方法 24 第二章 文獻回顧 25 2-1. 有機電激發光材料的分類[26] 25 2-1-1. 發光層材料 26 2-1-2. 電洞注入/傳輸材料(HIM/HTM)[22] 27 2-1-3. 電子注入材料(EIM) 28 2-1-4. 電子傳輸材料(ETM) 29 2-1-5. 電洞緩衝材料(HBM) 31 2-2. 濕式製程 34 2-3. Suzuki-Miyaura Coupling Reaction 35 2-4. 研究動機 36 第三章 實驗內容 38 3-1. 實驗裝備與設備 38 3-2. 鑑定儀器 40 3-3. 物性及光電特性測量儀器 41 3-4. 實驗藥品及材料 49 3-5. 合成步驟 51 3-6. 單體及高分子的合成 52 3-7. 元件設計、製作及量測 55 3-7-1. PLED元件之電洞緩衝層應用 55 3-7-2. Hole-Only元件製作步驟 60 第四章 結果與討論 61 4-1. 單體與高分子的合成與鑑定 62 4-1-1. 核磁共振光譜(NMR) 62 4-1-2. 元素分析儀(EA) 65 4-2. 熱性質分析 66 4-2-1. 熱重分析(TGA) 66 4-2-2. 微差式掃描熱卡計分析(DSC) 67 4-3. 光學性質分析 69 4-3-1. UV/Vis吸收光譜及PL放光光譜 69 4-4. 電化學性質分析 72 4-5. 高分子成膜性質分析 75 4-6. 高分子發光二極體元件特性 80 4-6-1. PPI-1和PPI-2之元件結構與能階 80 4-6-2. PPI-1應用於電洞緩衝層之元件特性 83 4-6-3. PPI-2應用於電洞緩衝層之元件特性 88 4-7. 元件表現探討 92 4-7-1. 高分子材料成膜性質影響 93 4-7-2. 高分子材料成膜之厚度影響 94 4-7-3. 單一載子元件(Single-Carrier Devices) 96 4-7-4. 高分子材料成膜顏色影響 99 4-7-5. 再結合區之探討 100 第五章 結論 102 第六章 參考文獻 104

    [1] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [2] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
    [3] 段啟聖, 化工資訊雜誌與商情, vol. 26, pp. 40, 2005.
    [4] 郭昭輝, 塑膠資訊雜誌, 2002.
    [5] B. Valeur, and M. N. Berberan-Santos, Molecular fluorescence: principles and applications: John Wiley & Sons, 2012.
    [6] M. Lax, “The Franck‐Condon Principle and Its Application to Crystals,” The Journal of Chemical Physics, vol. 20, no. 11, pp. 1752-1760, 1952.
    [7] V. May, Charge and energy transfer dynamics in molecular systems: John Wiley & Sons, 2008.
    [8] Z. H. Kafafi, Organic electroluminescence: CRC press, 2005.
    [9] 范佐興, “含咔唑及1,3,4-噁二唑基團之芴衍生物雙極主體材料: 合成及應用於磷光發二極體,” 2015.
    [10] L.T.Corporation, “Fluorescence Resonance Energy Transfer (FRET)—Note 1.2.”
    [11] J. Kalinowski, “Excimers and exciplexes in organic electroluminescence,” Materials Science (0137-1339), vol. 27, no. 3, 2009.
    [12] W. Yip, and D. H. Levy, “Excimer/exciplex formation in van der Waals dimers of aromatic molecules,” The Journal of Physical Chemistry, vol. 100, no. 28, pp. 11539-11545, 1996.
    [13] J. Guillet, “Polymer photophysics and photochemistry,” 1985.
    [14] 黃孝文、陳雲, 化工資訊月刊, vol. 第3期, pp. 8, 2001.
    [15] 葉昆明、陳雲, 科學發展, vol. 第385期, pp. 58, 2005.
    [16] 陳信宏、陳雲, 中工高雄會刊, vol. 第3期, pp. 72, 2006.
    [17] K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chemical reviews, vol. 107, no. 4, pp. 1233-1271, 2007.
    [18] M. Baldo, M. Thompson, and S. Forrest, “High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer,” Nature, vol. 403, no. 6771, pp. 750, 2000.
    [19] T. Sugimoto, and K. Fukutani, “Electric-field-induced nuclear-spin flips mediated by enhanced spin–orbit coupling,” Nature Physics, vol. 7, no. 4, pp. 307, 2011.
    [20] G. Malliaras, J. Salem, P. Brock, and C. Scott, “Electrical characteristics and efficiency of single-layer organic light-emitting diodes,” Physical Review B, vol. 58, no. 20, pp. R13411, 1998.
    [21] C.-C. Wu, J. C. Sturm, R. A. Register, J. Tian, E. P. Dana, and M. Tnompson, “Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities,” IEEE Transactions on Electron Devices, vol. 44, no. 8, pp. 1269-1281, 1997.
    [22] 陳金鑫、黃孝文, “有機電激發光材料與元件,” 2005.
    [23] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. Vardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers,” Nature, vol. 409, no. 6819, pp. 494, 2001.
    [24] J. Wilson, A. Dhoot, A. Seeley, M. Khan, A. Köhler, and R. Friend, “Spin-dependent exciton formation in π-conjugated compounds,” Nature, vol. 413, no. 6858, pp. 828, 2001.
    [25] G. Malliaras, and J. Scott, “The roles of injection and mobility in organic light emitting diodes,” Journal of applied physics, vol. 83, no. 10, pp. 5399-5403, 1998.
    [26] J. Segura, “The chemistry of electroluminescent organic materials,” Acta Polymerica, vol. 49, no. 7, pp. 319-344, 1998.
    [27] Y. Yang, and A. Heeger, “A new architecture for polymer transistors,” Nature, vol. 372, no. 6504, pp. 344, 1994.
    [28] J. Halls, C. Walsh, N. C. Greenham, E. Marseglia, R. H. Friend, S. Moratti, and A. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature, vol. 376, no. 6540, pp. 498, 1995.
    [29] H. Van Mullekom, J. Vekemans, E. Havinga, and E. Meijer, “Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers,” Materials Science and Engineering: R: Reports, vol. 32, no. 1, pp. 1-40, 2001.
    [30] G. Gustafsson, Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, and A. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, vol. 357, no. 6378, pp. 477, 1992.
    [31] A. J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials," ACS Publications, 2001.
    [32] S. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. D. Van Der Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Synthetic metals, vol. 139, no. 1, pp. 1-10, 2003.
    [33] J. Li, J. Liu, C. Gao, J. Zhang, and H. Sun, “Influence of MWCNTs doping on the structure and properties of PEDOT: PSS films,” International Journal of Photoenergy, vol. 2009, 2009.
    [34] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, “Organic EL cells using alkaline metal compounds as electron injection materials,” IEEE Transactions on electron devices, vol. 44, no. 8, pp. 1245-1248, 1997.
    [35] J. Huang, Z. Xu, and Y. Yang, “Low‐work‐function surface formed by solution‐processed and thermally deposited nanoscale layers of cesium carbonate,” Advanced Functional Materials, vol. 17, no. 12, pp. 1966-1973, 2007.
    [36] J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng, and D. Ma, “Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs,” Journal of Materials Chemistry, vol. 22, no. 11, pp. 5164-5170, 2012.
    [37] C. Ganzorig, and M. Fujihira, “Balanced Charge Injection and Singlet Exciton Quenching in Bilayer Organic Electroluminescent Devices,” MRS Online Proceedings Library Archive, vol. 771, 2003.
    [38] L. Hung, C. W. Tang, M. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Applied Physics Letters, vol. 78, no. 4, pp. 544-546, 2001.
    [39] G. Jabbour, B. Kippelen, N. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices,” Applied Physics Letters, vol. 73, no. 9, pp. 1185-1187, 1998.
    [40] Z. Sun, X. Ding, B. Ding, X. Gao, Y. Hu, X. Chen, Y. He, and X. Hou, “Buffer-enhanced electron injection in organic light-emitting devices with copper cathode,” Organic electronics, vol. 14, no. 2, pp. 511-515, 2013.
    [41] L. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
    [42] C. V. Hoven, A. Garcia, G. C. Bazan, and T. Q. Nguyen, “Recent applications of conjugated polyelectrolytes in optoelectronic devices,” Advanced Materials, vol. 20, no. 20, pp. 3793-3810, 2008.
    [43] H. Xiao, J. Miao, J. Cao, W. Yang, H. Wu, and Y. Cao, “Alcohol-soluble polyfluorenes containing dibenzothiophene-S, S-dioxide segments for cathode interfacial layer in PLEDs and PSCs,” Organic Electronics, vol. 15, no. 3, pp. 758-774, 2014.
    [44] X. Xu, B. Han, J. Chen, J. Peng, H. Wu, and Y. Cao, “2, 7-Carbazole-1, 4-phenylene Copolymers with polar side chains for cathode modifications in polymer light-emitting diodes,” Macromolecules, vol. 44, no. 11, pp. 4204-4212, 2011.
    [45] C.-L. Wu, and Y. Chen, “Hydroxyethyl cellulose filled with M2+ chelate complexes with ethylenediaminetetraacetic acid (EDTA) as an effective electron-injection layer for polymer light-emitting diodes,” Organic Electronics, vol. 25, pp. 156-164, 2015.
    [46] A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, “Electron transport materials for organic light-emitting diodes,” Chemistry of materials, vol. 16, no. 23, pp. 4556-4573, 2004.
    [47] S. A. Jenekhe, and S. Yi, “Efficient photovoltaic cells from semiconducting polymer heterojunctions,” Applied Physics Letters, vol. 77, no. 17, pp. 2635-2637, 2000.
    [48] F. Wang, J. Hu, X. Cao, T. Yang, Y. Tao, L. Mei, X. Zhang, and W. Huang, “A low-cost phenylbenzoimidazole containing electron transport material for efficient green phosphorescent and thermally activated delayed fluorescent OLEDs,” Journal of Materials Chemistry C, vol. 3, no. 21, pp. 5533-5540, 2015.
    [49] C.-H. Shih, P. Rajamalli, C.-A. Wu, M.-J. Chiu, L.-K. Chu, and C.-H. Cheng, “A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs,” Journal of Materials Chemistry C, vol. 3, no. 7, pp. 1491-1496, 2015.
    [50] F. Huang, H. Wu, D. Wang, W. Yang, and Y. Cao, “Novel electroluminescent conjugated polyelectrolytes based on polyfluorene,” Chemistry of Materials, vol. 16, no. 4, pp. 708-716, 2004.
    [51] D. Chen, L. Han, W. Chen, Z. Zhang, S. Zhang, B. Yang, Z. Zhang, J. Zhang, and Y. Wang, “Bis (2-(benzo [d] thiazol-2-yl)-5-fluorophenolate) beryllium: a high-performance electron transport material for phosphorescent organic light-emitting devices,” RSC Advances, vol. 6, no. 6, pp. 5008-5015, 2016.
    [52] D. Grozea, A. Turak, Y. Yuan, S. Han, Z. Lu, and W. Kim, “Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface,” Journal of applied physics, vol. 101, no. 3, pp. 033522, 2007.
    [53] S. Tadayyon, H. Grandin, K. Griffiths, P. Norton, H. Aziz, and Z. Popovic, “CuPc buffer layer role in OLED performance: a study of the interfacial band energies,” Organic Electronics, vol. 5, no. 4, pp. 157-166, 2004.
    [54] E. Forsythe, M. Abkowitz, and Y. Gao, “Tuning the carrier injection efficiency for organic light-emitting diodes,” The Journal of Physical Chemistry B, vol. 104, no. 16, pp. 3948-3952, 2000.
    [55] H. Yang, W. Xie, Y. Zhao, J. Hou, and S. Liu, “Enhanced current efficiency in organic light-emitting devices using 4, 4′-N, N′-dicarbazole-biphenyl as hole-buffer layer,” Solid-state electronics, vol. 51, no. 1, pp. 111-114, 2007.
    [56] F.-S. Juang, S.-H. Wang, C.-Y. Chen, Y.-S. Tsai, T.-C. Liao, H.-T. Chou, J.-S. Hsu, and L.-A. Hong, “Performance improvement of blue phosphorescent organic light-emitting diodes by using hole–buffer structure,” Thin Solid Films, vol. 519, no. 15, pp. 5260-5263, 2011.
    [57] F. Huang, H. Wu, and Y. Cao, “Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices,” Chemical Society Reviews, vol. 39, no. 7, pp. 2500-2521, 2010.
    [58] N. Miyaura, and A. Suzuki, “Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst,” Journal of the Chemical Society, Chemical Communications, no. 19, pp. 866-867, 1979.
    [59] N. Miyaura, T. Yanagi, and A. Suzuki, “The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases,” Synthetic Communications, vol. 11, no. 7, pp. 513-519, 1981.
    [60] N. Miyaura, and A. Suzuki, “Palladium-catalyzed cross-coupling reactions of organoboron compounds,” Chemical reviews, vol. 95, no. 7, pp. 2457-2483, 1995.
    [61] C. Tang, F. Liu, Y.-J. Xia, L.-H. Xie, A. Wei, S.-B. Li, Q.-L. Fan, and W. Huang, “Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes,” Journal of Materials Chemistry, vol. 16, no. 41, pp. 4074-4080, 2006.
    [62] X. Zhao, and X. Zhan, “Electron transporting semiconducting polymers in organic electronics,” Chemical Society Reviews, vol. 40, no. 7, pp. 3728-3743, 2011.
    [63] W. H. Hsieh, C.-F. Wan, D.-J. Liao, and A.-T. Wu, “A turn-on Schiff base fluorescence sensor for zinc ion,” Tetrahedron Letters, vol. 53, no. 44, pp. 5848-5851, 2012.
    [64] J.-H. Liou, P.-F. Hsu, and Y. Chen, “Hole-Buffer Material Derived from Pyrene, Schiff Base and Tris to Enhance Emission Efficiency of Polymer Light-Emitting Diodes,” Journal of Materials Science and Chemical Engineering, vol. 6, no. 03, pp. 31, 2018.
    [65] J. F. Rusling, and S. L. Suib, “Characterizing materials with cyclic voltammetry,” Advanced Materials, vol. 6, no. 12, pp. 922-930, 1994.
    [66] 黃英碩, “掃描探針顯微術的原理及應用,” 科儀新知, no. 144, pp. 7-17, 2005.
    [67] 朱柏豪, “表面輪廓儀的用途,” 國家奈米元件實驗室奈米通訊, vol. 22, no. 1, pp. 31-33, 2015.
    [68] Y. Qiao, J. Zhang, W. Xu, and D. Zhu, “Novel 2, 7-substituted pyrene derivatives: syntheses, solid-state structures, and properties,” Tetrahedron, vol. 67, no. 19, pp. 3395-3405, 2011.
    [69] J. M. Rathfon, Z. M. AL‐Badri, R. Shunmugam, S. M. Berry, S. Pabba, R. S. Keynton, R. W. Cohn, and G. N. Tew, “Fluorimetric Nerve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub‐Micrometer Fibers,” Advanced Functional Materials, vol. 19, no. 5, pp. 689-695, 2009.
    [70] B.-C. Wang, J.-C. Chang, H.-C. Tso, H.-F. Hsu, and C.-Y. Cheng, “Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives,” Journal of Molecular Structure: THEOCHEM, vol. 629, no. 1-3, pp. 11-20, 2003.
    [71] T. Iwamoto, E. Kayahara, N. Yasuda, T. Suzuki, and S. Yamago, “Synthesis, Characterization, and Properties of [4] Cyclo‐2, 7‐pyrenylene: Effects of Cyclic Structure on the Electronic Properties of Pyrene Oligomers,” Angewandte Chemie International Edition, vol. 53, no. 25, pp. 6430-6434, 2014.
    [72] D. A. Mengistie, M. A. Ibrahem, P.-C. Wang, and C.-W. Chu, “Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells,” ACS applied materials & interfaces, vol. 6, no. 4, pp. 2292-2299, 2014.
    [73] X. Wu, J. Liu, and G. He, “A highly conductive PEDOT: PSS film with the dipping treatment by hydroiodic acid as anode for organic light emitting diode,” Organic Electronics, vol. 22, pp. 160-165, 2015.
    [74] Y. Xia, and J. Ouyang, “Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids,” ACS applied materials & interfaces, vol. 2, no. 2, pp. 474-483, 2010.
    [75] S.-F. Chen, and C.-W. Wang, “Influence of the hole injection layer on the luminescent performance of organic light-emitting diodes,” Applied physics letters, vol. 85, no. 5, pp. 765-767, 2004.
    [76] C.-T. Liao, H.-F. Chen, H.-C. Su, and K.-T. Wong, “Tailoring balance of carrier mobilities in solid-state light-emitting electrochemical cells by doping a carrier trapper to enhance device efficiencies,” Journal of Materials Chemistry, vol. 21, no. 44, pp. 17855-17862, 2011.
    [77] H.-C. Su, and J.-H. Hsu, “Improving the carrier balance of light-emitting electrochemical cells based on ionic transition metal complexes,” Dalton Transactions, vol. 44, no. 18, pp. 8330-8345, 2015.

    下載圖示 校內:2019-09-01公開
    校外:2021-09-01公開
    QR CODE