簡易檢索 / 詳目顯示

研究生: 董志秋
Tung, Chih-Chiu
論文名稱: 由同震水文反應估算含水層特性與地質材料性質之研究
On Estimating the Properties of Aquifer and Geologic Material from the Coseismic Hydrologic Response
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 182
中文關鍵詞: 孔隙彈性集集地震體積應變同震地下水位變化濁水溪沖積扇
外文關鍵詞: Volumetric strain, Poroelasticity, Choshuishi alluvial fan, Chi-Chi earthquake, Coseismic changes of groundwater level
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1999年921集集大地震發生時濁水溪沖積扇出現了土壤液化、地表位移量改變以及流川流量與地下水位改變等現象,這些水文現象的改變顯示濁水溪沖積扇地下水文性質受到集集地震的影響。對水資源管理而言,了解地震對地下水文性質的可能改變是相當重要的。
    本研究依據集集地震發生時濁水溪沖積扇地下水位觀測網之時水位記錄,以及自由場強地動觀測站所記錄之地震震度、尖峰加速度與地表位移量等資料,以定性及定量方式分析地震與地下水文變化可能相關性。首先繪製地下水文與地震資料空間分佈等值圖進行相似性比對定性分析,再利用碎形理論方法計算不同變量之碎形維度作定量分析。接著探討集集地震可能引致含水層特性之改變,使用兩種物理模式分別由水位變化量與垂直位移量去估算含水層孔隙率及水力傳導係數改變量,作為水資源規劃管理的參考。在現場地質材料之非均勻空間分佈推估上,使用孔隙彈性理論由同震水文反應估算地質材料參數,探討其與水文地質參數之相關性,作為以後地震機制與模擬之基本資料。
    研究結果顯示垂直位移量較大區域及水位變化量較大區域與含水層高水力傳導係數區域大致符合,推測集集地震所造成的水文變化可能為含水層中之高傳導係數區域。定量分析顯示地震震度及地表垂直位移量與水位變化之碎形維度較為相似。本研究使用的兩種模式所估算出孔隙率及水力傳導係數改變量相較實際值而言非常小,顯示濁水溪沖積扇地下水文性質受地震影響並不大。本研究從地質材料性質觀點使用基本之土壤力學及孔隙彈性理論求出水井體積應變效率為2.3~36.9cm/ppm。由孔隙率變化估算體積應變結果,以水位變化模式估測值最低,垂直位移變化模式估測值最高,而文獻中均質材料之錯位模式估側值居中。由體積應變配合實際水位資料計算體積應變效率,水位變化模式結果介於74~161cm/ppm,與斷層錯位模式結果落在同一級數內,垂直位移變化模式結果介於0.03~2.26cm/ppm之間較為偏小。含水層特性與地質材料性質關聯性分析顯示,體積應變效率較大區域與水位變化幅度較大區域有一致的關係。

    Liquefactions of soil, displacements of ground surface, changes of stream flow and water level have been observed in the Choshuishi alluvial fan during and after the 1999 Chi-Chi earthquake. The hydrological response of the Choshuishi alluvial fan to the Chi-Chi earthquake shows that the earthquake impacted the aquifer. Understanding the possible earthquake-induced changes of hydrogeologic properties is important for the water resources management.
    In this study both hydrological and earthquake data were used to qualitatively and quantitatively analyze the possible correlations between the hydrologic response and seismic factors. These data are the hourly digital records of the groundwater level from monitoring well network and records of magnitude, peak ground acceleration (PGA) and ground surface displacements from free-field strong-motion stations in the Choshuishi alluvial fan. First we qualitatively examined the similarity of the hydrologic response and seismic factors by comparing contour maps. Then the fractal analysis was performed to quantitatively determine the similarity of the spatial distributions of different factors. Changes in porosities and hydraulic conductivity were evaluated in the main aquifers of the Choshuishi alluvial fan based on the data of groundwater level and the vertical displacement of ground surface. Poroelasticity theory was utilized to evaluate the properties of geologic material and its spatial distribution using coseismic hydrologic response. Then we investigated the correlations between the geologic properties and hydrogeologic parameters.
    Our result shows that the area with larger vertical displacements of ground surface and larger changes of water level in the Chi-Chi earthquake was found to coincide with the area having a larger hydraulic conductivity. This indicates that the change of the Choshuishi alluvial fan due to the Chi-Chi earthquake may mainly occurred in the highly permeable zones. The changes of groundwater level, earthquake magnitude, and vertical displacement of ground surface were found to have similar fractal dimensions. Changes of porosities and hydraulic conductivity due to the 1999 Chi-Chi earthquake were very small based on our proposed two approaches. By using soil mechanics and poroelasticity theory, the volumetric strain efficiency is found in the range from 2.3 to 36.9 cm/ppm. The estimated volumetric strains are different from three approaches. The first model based on the change of water level has the smallest volume strain while the second model based on the displacement of ground surface has the largest one. By using the volumetric strain to compute volumetric strain efficiency, the result estimated from the first model is 74~161 cm/ppm which is in agreement with those calculated by the third model using dislocation theory. The result estimated from the second model is 0.03~2.26 cm/ppm and is smallest among the three mdels. The area with larger volumetric strain efficiency was found to coincide with the area having larger changes of water level.

    摘要 Ⅰ Abstract Ⅲ 誌謝 Ⅴ 目錄 Ⅵ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 前人研究 3 1-4 研究方法與流程 8 第二章 研究區域 10 2-1 濁水溪沖積扇之水文地質架構 10 2-1-1 水文地質分層 11 2-1-2 含水層水力特性 13 2-1-3 地下水觀測站 16 2-2 九二一集集大地震 18 2-2-1 集集地震與車籠埔斷層 18 2-2-2 土壤液化 19 第三章 同震水文反應與地震之關聯 22 3-1 地震與地下水文資料分析 22 3-1-1 地震資料空間分佈 22 3-1-2 地下水文資料空間分佈 32 3-2 地震與地下水文相關性分析 51 3-2-1 碎形理論 51 3-2-2 碎形維度計算方法 54 3-2-3 地震與水文之碎形分析 58 第四章 同震水文反應與含水層特性改變分析 67 4-1 地震前後含水層水力性質分析 67 4-1-1 水力傳導係數變化之估測 67 4-1-2 含水層初始孔隙率之估測 68 4-2 由水位變化估算水力傳導係數變化 69 4-3 由垂直位移量估算水力傳導係數變化 78 第五章 同震水文反應與地質材料性質分析 85 5-1 同震孔隙彈性理論 85 5-1-1 孔隙彈性本構方程 85 5-1-2 水井體積應變反應 87 5-1-3 步階式同震水位反應 89 5-2 同震體積應變靈敏度 91 5-2-1 材料彈性參數設定 92 5-2-1-1 B值之推求 93 5-2-1-2 值之推求 94 5-2-2 水井體積應變效率 95 5-3 體積應變計算 98 5-3-1 由孔隙率變化估算體積應變 98 5-3-2 由體積應變估算水井體積應變效率 108 5-4 含水層特性與地質材料性質之關聯 117 5-4-1 模式一(以水位變化為基礎) 117 5-4-2 模式二(以垂直位移量變化為基礎) 120 5-4-3 模式三 122 第六章 結論與建議 123 6-1 結論 123 6-2 建議 125 參考文獻 127 附錄A 觀測井水位變化歷線圖 135 附錄B 同震孔隙彈性理論關係式推導 167 附錄C 孔隙水壓參數B推導 180 表目錄 表2-1 濁水溪沖積扇含水層特性參數表 15 表2-2 濁水沖積扇地下水觀測井歸層表 17 表3-1 濁水溪沖積扇區域64個地震觀測站資料 23 表3-2 各地震因子之碎形維度 60 表3-3 各含水層水位變化之碎形維度 62 表4-1 水力傳導係數與沉積物材質對應表 69 表4-2 沉積物之粒徑分級表 69 表4-3 水位變化估算水力傳導係數變化量表 73 表4-4 垂直位移量估算水力傳導係數變化量表 80 表5-1 不同土壤性質之彈性參數表 95 表5-2 不同地質材料之壓縮係數 96 圖目錄 圖1-1 本研究架構與流程圖 9 圖2-1 濁水溪沖積扇分區位置圖 12 圖2-2 台灣中部地區地體構造簡圖 20 圖2-3 集集地震土壤液化案例分佈圖 21 圖3-1 地震觀測站位置分佈圖 25 圖3-2 地震震度空間分佈等值圖 26 圖3-3 全台灣地震震度分佈圖 27 圖3-4 水平向加速度PGA空間分佈等值圖 29 圖3-5 垂直向加速度PGA空間分佈等值圖 30 圖3-6 垂直位移量等值圖 31 圖3-7 濁水溪沖積扇地下水站網分佈圖 34 圖3-8 觀測井水位變化歷線圖 35 圖3-9 集集地震前後含水層1地下水位變化等值圖 37 圖3-10 集集地震前後含水層2-1地下水位變化等值圖 38 圖3-11 集集地震前後含水層2-2地下水位變化等值圖 39 圖3-12 集集地震前後含水層3地下水位變化等值圖 40 圖3-13 集集地震前後含水層4地下水位變化等值圖 41 圖3-14 含水層1一點至三點時水位等值與流向圖 43 圖3-15 含水層2-1一點至三點時水位等值與流向圖 44 圖3-16 含水層2-2一點至三點時水位等值與流向圖 45 圖3-17 含水層3一點至三點時水位等值與流向圖 46 圖3-18 含水層4一點至三點時水位等值與流向圖 47 圖3-19 水力傳導係數空間分佈圖 49 圖3-20 高水力傳導係數區域與較大垂直位量區域及水位變化疊加圖 50 圖3-21 容忍角與區段距離 57 圖3-22 地震因子之全方位試驗變差圖 60 圖3-23 地震因子之異向性試驗變差圖 61 圖3-24 含水層水位變化之全方位試驗變差圖 63 圖3-25 含水層水位變化之異向性試驗變差圖 64 圖3-26 各含水層水力傳導係數之共變異圖 66 圖4-1 由水位變化估測含水層2-1水力傳導係數變化等值圖 75 圖4-2 由水位變化估測含水層2-2水力傳導係數變化等值圖 76 圖4-3 由水位變化估測含水層3水力傳導係數變化等值圖 77 圖4-4 由垂直位移量估測含水層2-1水力傳導係數變化等值圖 82 圖4-5 由垂直位移量估測含水層2-2水力傳導係數變化等值圖 83 圖4-6 由垂直位移量估測含水層3水力傳導係數變化等值圖 84 圖5-1 侷限含水層與井孔反應體積應變產生水位變化示意圖 88 圖5-2 美國Kettleman Hills地震計算出的地殼應變分佈圖 90 圖5-3 受到等向性應力狀態下之土壤單元體示意圖 92 圖5-4 模式計算與李民(2002)計算結果之體積應變效率疊合圖 97 圖5-5 土壤試體單元體示意圖 98 圖5-6 濁水溪沖積扇地下水位與地震體積應變疊合圖 101 圖5-7 由水位變化估算含水層2-1同震體積應變空間分佈圖 102 圖5-8 由水位變化估算含水層2-2同震體積應變空間分佈圖 103 圖5-9 由水位變化估算含水層3同震體積應變空間分佈圖 104 圖5-10 由垂直位移量估算含水層2-1同震體積應變空間分佈圖 105 圖5-11 由垂直位移量估算含水層2-2同震體積應變空間分佈圖 106 圖5-12 由垂直位移量估算含水層3同震體積應變空間分佈圖 107 圖5-13 由模式一所計算出體積應變效率圖 109 圖5-14 由水位變化估算含水層2-1體積應變效率空間分佈圖 110 圖5-15 由水位變化估算含水層2-2體積應變效率空間分佈圖 111 圖5-16 由水位變化估算含水層3體積應變效率空間分佈圖 112 圖5-17 由模式二所計算出體積應變效率圖 113 圖5-18 由垂直位移量估算含水層2-1體積應變效率空間分佈圖 114 圖5-19 由垂直位移量估算含水層2-2體積應變效率空間分佈圖 115 圖5-20 由垂直位移量估算含水層3體積應變效率空間分佈圖 116 圖5-21 模式一所計算出體積應變效率與水力傳導係數關係圖 119 圖5-22 水力傳導係數K0與孔隙率n0關係圖 119 圖5-23 模式一所計算出體積應變效率與濾水管平均深度關係圖 120 圖5-24 模式二所計算出體積應變效率與水力傳導係數關係圖 121 圖5-25 模式二所計算出體積應變效率與濾水管平均深度關係圖 121 圖5-26 李民(2002)所計算出體積應變效率與水力傳導係數關係圖 123 圖5-27 李民(2002)所計算出體積應變效率與濾水管平均深度關係圖 123

    1.Barkan, D. D., Dynamics of Bases and Foundations, McGraw-Hill Book Company, New York, 1962.
    2.Bartoli, F., G. Burtin, J. J. Royer, M. Gury, V. Gomendy, R. Philippy, Th. Leviandier, and R. Gafrej, Spatial variability of topsoil characteristics within one silty soil type. Effects on clay migration, Geoderma, 68, 279-300, 1995.
    3.Bear, J., Dynamics of Fluids in Porous Media, 764 pp., Elsevier, New York, 1972.
    4.Biot, M. A., General theory of three-dimensional consolidation, Journal of Applied Physics, Vol. 12, 155-164, 1941.
    5.Biot, M. A., General solutions of the equations of elasticity and consolidation for a porous material, Journal of Applied Mechanics, Vol. 78, 91-96, 1956.
    6.Biot, M. A., and D. G. Willis, The elastic coefficients of the theory of consolidation, Journal of Applied Mechanics, Vol. 24, 594-601, 1957.
    7.Bowles, J. E., Foundation analysis and design, McGraw-Hill Co., New York, 1968.
    8.Carr, J. R., and W. B. Benzer, On the practice of estimating fractal dimension, Mathematical Geology, Vol. 23, No. 7, 945-958, 1991.
    9.Chia, Y., Y. S. Wang, J. J. Chiu, and C. W. Lin, Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui river alluvial fan in Taiwan, Bulletin of the Seismological Society of America, Vol. 91, No. 5, 1062-1068, 2001.
    10.Das, B. M., Principles of Geotechnical Engineering, Third Edition, PWS Publishing Company, 1994.
    11.Das, B. M., Advanced Soil Mechanics, Second Edition, Taylor & Francis, 1997.
    12.Desbarats, A. J., and S. Bachu, Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale:A case study, Water Resources Research, Vol. 30, No. 3, 673-684, 1994.
    13.Deutsch, C. V., and A. G. Journel, Geostatistical Software Library and User’s Guide (GSLIB), Second Edition, Oxford, New York, 1998.
    14.Dmovska, R., G. Zheng, and J. R. Rice, Seismicity and deformation at convergent margins due to heterogeneous coupling, Journal of Geophysical Research, Vol. 101, 3015-3029, 1996.
    15.Freeze, R. A., and J. A. Cherry, Groundwater, Prentice-Hall, Englewood Cliffs, N.J., 1979.
    16.Grecksch, G., F. Roth, and H. J. Kumpel, Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions, Geophysical Journal International, Vol. 138, 470-478, 1999.
    17.Huang, W., S. Rojstaczer, and S. Breau, Coseismic response of water level to earthquake in the San Jacinto Fault, Southern California, Eos(Transactions, American Geophysical Union), Vol. 76, Suppl., 359, 1995.
    18.Igaraghi, G., and H. Wakita, Tidal responses and earthquake-related changes in the water level of deep wells, Journal of Geophysical Research, Vol. 96, No. B3, 4269-4278, 1991.
    19.Igaraghi, G., and H. Wakita, Groundwater Radon anomalies associated with earthquakes, Tectonophysics, Vol. 180 , 237-254 , 1992.
    20.King, C. Y., S. Azuma, G. Igarashi, M. Ohno, H. Saito, and H. Wakita, Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan, Journal of Geophysical Research, Vol. 104, No. B6, 13073-13082, 1999.
    21.Klinkenberg, B., A review of methods used to determine the fractal dimension of linear features, Mathematical Geology, Vol. 26, No. 1, 23-46, 1994.
    22.Koizumi, N., Y. Kano, Y. Kitagawa, T. Sato, M. Takahashi, S. Nishimura, and R. Nishida, Groundwater anomalies associated with the 1995 Hyogo-ken Nanbu Earthquake, Journal of Physical Earth, Vol. 44, 373-380, 1996.
    23.Kumpel, H. J., Poroelasticity: parameters reviewed, Geophysical Journal International, Vol. 105, 783-799, 1991.
    24.Kunugi, T., Y. Fukao, and M. Ohno, Underdamped responses of a well to nearby swarm earthquakes off the coast of Ito City, central Japan, 1995, Journal of Geophysical Research, Vol. 105, No. B4, 7805-7818, 2000.
    25.Lee, W. H. K., T. C. Shin, K. W. Kuo, and K. C. Chen, Digital strong-motion data from the 921 Chi-Chi earthquake recorded by the Central Weather Bureau: Taiwan Seismological Center, Technical Report, Central Weather Bureau, 1999.
    26.Lee, M., T. K. Liu, K. F. Ma, Y. M. Chang, Coseismic hydrological changes associated with dislocation of the September 21, 1999 ChiChi earthquake, Taiwan, Geophysical Research Letters, Vol. 29, No. 17, art no. 1824,2002.
    27.Ma, K. F., C. T. Lee, and Y. B. Tsai, The Chi-Chi, Taiwan earthquake:Large surface displacement on an inland thrust fault: Eos(Transactions, American Geophysical Union), Vol. 80, 605-611, 1999.
    28.Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu, Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, Earthquake, Bulletin of the Seismological Society of America, Vol. 91, No. 5, 1069-1087, 2001.
    29.Major, A., Vibration Analysis and Design of Foundations for Machine and Turbines, Collet’s Holdings Ltd., London, Akademiai Kiadv, Ch. 7, 1962.
    30.Mandelbrot, B. B., How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, Vol. 155, 636-638, 1967.
    31.Mandelbrot, B. B., Fractals:form, chance, and dimension, San Francisco, 1977.
    32.Nanjo, K., and H. Nagahama, Spatial distribution of aftershocks and the fractal structure of active fault systems, Pure and Applied Geophysics, Vol. 157, 575-588, 2000.
    33.Nur, A., Dilatancy, pore fluids, and premonitory variations in ts/tp travel times, Seismological Society of America Bulletin, Vol. 62, 1217-1222, 1972.
    34.Ohno, M., H. Wakita, and K. Kanjo, A water well sensitive to seismic wave, Geophysical Research Letters, Vol. 24, 691-694, 1997.
    35.Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, Vol. 82, No. 2, 1018-1040, 1992.
    36.Quilty, E. G., and E. A. Roeloffs, Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California, Bulletin of the Seismological Society of America, Vol. 87, No. 2, 310-317, 1997.
    37.Ramiah, B. K. and L. S. Chickanagappa, Soil Mechanics and Foundation Engineering, Second Edition, Balkema A. A., Rotterdam, 1990.
    38.Rice, J. R. and M. P. Cleary, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics and Space Physics, Vol. 14, No. 2, 227-241, 1976.
    39.Roeloffs, E. A., Hydrologic precursors to earthquake:A review, Pure and Applied Geophysics, Vol. 126, 177-209, 1988.
    40.Roeloffs, E. A., S. S. Burford, F. S. Riley, and A. W. Records, Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California, Journal of Geophysical Research, Vol. 94, No. B9, 12387-12402, 1989.
    41.Roeloffs, E. A., Poroelastic techniques in the study of earthquake-related hydrologic phenomena, in Advances in Geophysics, edited by R. Dmowska, Academic, San Diego, Calif, Vol. 137, 135-195, 1996.
    42.Roeloffs, E., and E. Quilty, Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, Earthquake, Pure and Applied Geophysics, Vol. 149, 21-60, 1997.
    43.Roeloffs, E. A., Persistent water level changes in a well near Parkfield, California, due to local and distant earthquake, Journal of Geophysical Research, Vol. 103, No. B1, 869-889, 1998.
    44.Rojstaczer, S., Determination of fluid flow properties from the response of water levels in wells to atmospheric loading, Water Resources Research, Vol. 24, No. 11, 1927-1938, 1988.
    45.Rojstaczer, S., and S. Wolf, Permeability changes associated with large earthquakes: An example from Loma Prieta, California, Geology, Vol. 20, 211-214, 1992.
    46.Roy, A.G., G. Gravel, and C. Guathier, Measuring the dimension of surfaces: A review and appraisal of different methods, Proceedings of AUTOCARTO-8, March29-April 3, Baltimore, Maryland, 68-77, 1987.
    47.Scholz, C. H., Post-earthquake dilatancy recovery, Geology, Vol. 2, 551-554, 1974.
    48.Shen, W., and P. D. Zhao, Multidimensional self-affine distribution with application in geochemistry, Mathematical Geology, Vol. 34, No. 2, 2002.
    49.Skempton, A. W., The pore-pressure coefficients A and B, Geotechnique, Vol. 4, 143-147, 1954.
    50.Sung Q., and D. Tsaan, Fractal dimension of topographic surface of Taiwan and its geomorphic implications, Journal of the Geological Society of China, Vol. 35, No. 4, 389-406, 1992.
    51.Terzaghi, K., Evaluation of coefficients of subgrade reaction, Geotechnique, London, Vol. 5, No 4, 297-326, 1955.
    52.Wakita, H., Water wells as possible indicators of tectonic strain, Science, Vol. 189, 553-555, 1975.
    53.Wang, H. F., Quasi-static poroelastic parameters in rock and their geophysical applications, Pure and Applied Geophysics, Vol. 141, 269-286, 1993.
    54.Wang, H. F., Effects of deviatoric stress on undrained pore pressure response to fault slip, Journal of Geophysical Research, Vol. 102, No. B8, 17943-17950, 1997.
    55.Wang, C. Y., L. H. Cheng, C. V. Chin, and S. B. Yu, Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan, Geological Society of America, Vol. 29, No. 9, 831-834, 2001.
    56.Wright, M., P. Dillon, P. Pavelic, P. Peter, and A. Nefiodovas, Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses, Ground water, Vol. 40, No. 5, 509-517, 2002.
    57.中央氣象局網站。
    58.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗81年度報告,台灣省水利局,台中,1992。
    59.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗82年度報告,台灣省水利局,台中,1993。
    60.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗83年度報告,台灣省水利局,台中,1994。
    61.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗84年度報告,台灣省水利局,台中,1995。
    62.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗85年度報告,台灣省水利局,台中,1996。
    63.台糖鑿井隊,台灣地區地下水觀測網第一期計劃濁水溪沖積扇地下水觀測井開鑿集相關試驗86年度報告,台灣省水利局,台中,1997。
    64.地下水工程處,大濁水溪沖積扇平原地下水勘察報告,台中,1963。
    65.何金時,碎形理論在河川彎曲及其受人為影響之研究,國立成功大學水利及海洋工程研究所碩士論文,1995。
    66.李宗仰、劉長齡,台灣主要河川之碎形特性,土木水利季刊,第21卷,第4期,3-11頁,1995。
    67.李友平,九二一大地震前後濁水溪沖積扇地下含水層應力變化分析,第十二屆水利工程研討會,G137-G144,2001。
    68.李民,集集地震前後與其同震水文變化研究,國立台灣大學地質科學研究所博士論文,2002。
    69.汪中和、彭宗仁、陳文福、李閔國、江崇榮,濁水溪沖積扇地下水氫氧同位素組成在集集地震前後的變化,第四屆地下水資源與水質保護研討會,365-371,2001。
    70.林裕彬、鄧東波、吳振發,景觀生態計量方法於農業景觀生態系統之空間結構探討,農業工程學報,第47卷,第2期,74-91頁,1991。
    71.林允斌、陳主惠、黃柏壽、譚義績,集集大地震後水井水位變化模擬及分析,臺灣水利,第49卷,第3期,30-41頁,2001。
    72.陳棋炫,地層受壓導致有效應力與孔隙水壓變化之耦合分析,國大台灣大學地質科學研究所碩士論文,2001。
    73.陳佳杏,集集地震前後濁水溪沖積扇地下水水位變化之探討,國大台灣大學地質科學研究所碩士論文,2002。
    74.黃金聰、史天元,以碎形為基礎之地形模擬與分析,中正嶺學報,第27卷,第1期,117-130頁,1998。
    75.黃奇瑜、林慶偉、陳文山、陳于高、余水倍、賈儀平、呂明達、候進雄、王原堅,「集集地震與台灣中部車籠埔地震斷層」, International Workshop on Chi-Chi , Taiwan Earthquake of September, 1999。
    76.黃皇嘉、溫志超,集集地震引起之濁水溪沿岸伏流水變化研究(二):淺層地下水位之變化,第十三屆水利工程研討會,P-50~P-57,2002。
    77.溫志超、楊志盛、張湘杰、謝樹和,集集地震引起之濁水溪沿岸伏水變化研究(一),第十二屆水利工程研討會,N-38~N-44,2001。
    78.經濟部水資源局,台灣地區地下水觀測網整體計畫第一期(81~87年度)成果彙編,1999。
    79.經濟部中央地質調查所,九二一地震地質調查報告,1999。
    80.經濟部水利處,九二一集集大地震地表地下水位變動分析報告,2000。
    81.經濟部水利署,地震發生前後地下水水位異常變化之研究(2/5)計劃成果報告書,2002。
    82.賈儀平、王原賢、陳佳杏、吳雪蘋,集集大地震前後濁水溪沖積扇之地下水位變化,第四屆地下水資源與水質保護研討會,359-363,2001。
    83.鄭克聲、許正芳,台灣地區降雨之碎形分析,台灣水利季刊,第45卷,第2期,38-46頁,1997。
    84.賴宏源,九二一集集地震中部地區土壤液化案例之研析,國立成功大學土木工程研究所碩士論文,2000。
    85.錢滄海,單一河道之碎形維度,中華水土保持學報,第25卷,第1期,53-60頁,1994。

    下載圖示 校內:立即公開
    校外:2003-08-18公開
    QR CODE