簡易檢索 / 詳目顯示

研究生: 陳皓馨
Chen, Hao-Hsin
論文名稱: 天然膨潤土改質與膠囊化處理及其對Sr2+及Cs+離子之吸附特性研究
Modification and Encapsulation to Natural Bentonite for Removing Cs+ and Sr2+ ions
指導教授: 吳毓純
Wu, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 膨潤土Sr2+Cs+Co2+改質吸附離子競爭膠囊玻璃化封存
外文關鍵詞: Bentonite, Cesium, Strontium, Modification, Adsorption, Ion competition, Vitrification
相關次數: 點閱:119下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用自然界中常見的膨潤土對Cs+與Sr2+進行除汙工程,實驗分為兩大部分,第一部分為天然膨潤土之改質處理,藉由酸處理對天然膨潤土進行結構改質,活化膨潤土結構並去除其中多餘的陽離子雜質,再以強鹼處理進行離子改質,使Na+進入結構中佔據吸附位址,以提升膨潤土對Cs+與Sr2+之離子交換效果。
    實驗結果顯示,於6 M之HCl於60 ℃環境下之結構改質處理,可使較多膨潤土層間之陽離子雜質(Mg2+、Ca2+、K+、Fe2+)溶出,且比表面積由26 m2/g提升至84.06 m2/g。由SEM分析證實,酸洗處理後使得膨潤土顆粒明顯變小。離子改質的部分選用6 M的NaOH於常溫環境下進行,EDS顯示強酸與強鹼會使膨潤土中的Al3+及Si4+溶出,使部分非橋氧配位形成,使溶液中Na+得以進入結構中,並附著於膨潤土的活化位置上,有效提升吸附效果。批次吸附實驗顯示,改質後的膨潤土對於Cs+與Sr2+吸附行為符合Langmuir model,飽和吸附量分別為169.46 mg/g與78.13 mg/g。從變溫吸附實驗中得到改質膨潤土之吸附Sr2+熱力學參數ΔG及ΔH分別為-4.962 kJ/mol(at 298 K)及-4.3 kJ/mol,顯示改質膨潤土對Sr2+與之吸附為一自發放熱反應。
    與改質高嶺土相互比較之下,發現改質膨潤土存在部分六配位之Al(AlVI)離子,推測以AlVI-O-Na形式鍵結之Na+,與Sr2+之離子交換效率較高,因此改質膨潤土對Sr2+具有較高的吸附效率。
    在Cs+、Sr2+、Co2+離子競爭吸附實驗結果發現,一價與二價陽離子應佔據不同的吸附位址,而二價陽離子(Sr2+與Co2+)會取代部分Cs+之吸附位址,導致Cs+吸附量會隨著二價陽離子的濃度提升而顯著下降,其中Co2+由於離子半徑最小,且自由能最低,因此具有最高之競爭吸附能力,使得Cs+與Sr2+之吸附能力隨著Co2+之存在均有明顯下降的現象。
    本研究之第二部分為改質膨潤土之實廠應用評估。首先利用本研究室所開發之鈉鋁矽基質材料作為改質膨潤土之包覆材料,將有效粒徑由原始0.5m增大至0.3 mm,形成改膨潤土膠囊,解決微粒懸浮外洩及廢料再回收的問題。改質膨潤土膠囊因部分Na+受到膠囊包覆,而導致對Cs+與Sr2+的飽和吸附量略微下降,分別為132.98 mg/g及61.46 mg/g。最後,將吸附實驗完成後之膠囊廢棄物進行玻璃化處理,利用高溫達到鈉鋁矽基質材料玻璃固化之作用,可有效將Sr2+封存於玻璃化廢料中,除了體積大幅降低之外,經標準化離子洩漏測試結果,亦確認無離子洩露的狀況發生。

    This study is devoted in the decontamination of nuclear wastewater, especially Cs+ and Sr2+. Bentonite was modified to increase the adsorption capacity of Sr2+. The adsorption capacity of Sr2+ increased from 32.9 to 78.1 mg/g after modification. The modified bentonite also has great Cs+ adsorption capacity around 169.49 mg/g. The structure was studied to find out the key factor of Sr2+ adsorption. The modified bentonite was tested in multi-cations solutions and simulated seawater to investigate the ion competition behavior. Both the adsorption capacity of Cs+ and Sr2+ decrease since other cations appeared. The sodium aluminosilicate material (NAS) from our previous research was used for granulation to obtain modified bentonite capsule. The adsorption isotherm and leaking experiment of modified bentonite capsule were also investigated for practical application. The adsorption capacity of Cs+ and Sr2+ of modified bentonite capsule was 132.98 and 61.46 mg/g, respectively without leaking after vitrification for 30 days.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 XIV 目錄 XVI 表目錄 XX 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎及文獻回顧 5 2-1 90Sr、137Cs及60Co之特性介紹 5 2-2 放射性廢水處理方式 6 2-2-1 蒸發法 7 2-2-2 化學沉澱法 7 2-2-3 離子交換法 8 2-3 天然礦物吸附劑 9 2-4 膨潤土之介紹 11 2-4-1 膨潤土之吸附機制與特性 12 2-4-2 膨潤土之吸附機制 12 2-5 天然礦物吸附劑之改質方式 14 2-5-1 酸活化改質處理 14 2-5-2 離子改質處理 14 2-5-3 膨潤土之改質處理 15 2-6 吸附理論 17 2-6-1 等溫吸附模式 18 2-6-2 吸附熱力學 22 2-7 影響吸附之因素 23 2-7-1 吸附劑的影響因素 23 2-7-2 吸附質的影響因素 24 2-7-3 環境的影響因素 24 第三章 實驗方法與步驟 26 3-1 實驗藥品 26 3-2 實驗流程 27 3-2-1 膨潤土之改質處理 27 3-2-2 改質膨潤土之膠囊化造粒 28 3-2-3 離子批次吸附實驗 29 3-2-3-6 管柱吸附實驗 33 3-3 吸附材料之性質分析 35 3-3-1 X光粉末繞射分析 35 3-3-2 X光光電子能譜儀 36 3-3-3 X射線螢光能譜儀 37 3-3-4 比表面積分析儀 37 3-3-5 掃描式電子顯微鏡與穿透式電子顯微鏡 38 3-3-6 傅立葉轉換紅外線光譜儀 39 3-3-7 NMR 固態核磁共振光譜儀 39 3-3-8 火焰原子吸收光譜儀 40 第四章 結果與討論 41 4-1 膨潤土基本性質分析 41 4-2 膨潤土之改質處理 42 4-2-1 酸活化改質處理 42 4-2-2離子改質處理 48 4-3 改質膨潤土對Sr2+之吸附特性探討 51 4-3-1 等溫吸附實驗 51 4-3-2 溫度對於吸附之影響 54 4-3-3 改質膨潤土吸附Sr2+之熱力學探討 56 4-3-4 pH值對改質膨潤土吸附Sr2+之影響 59 4-3-5 改質膨潤土吸附Sr2+之機制分析 60 4-3-6 改質膨潤土之吸附能力與相關文獻之比較 62 4-4 改質天然礦物之吸附特性比較 63 4-5 改質膨潤土於去除他種離子之應用 67 4-5-1 改質膨潤土對於Cs+及Co2+之等溫吸附實驗 68 4-5-2 二元及三元離子競爭吸附行為探討 71 4-5-3 海水模擬試驗 75 4-6 改質膨潤土於實廠化之應用 77 4-6-1 改質膨潤土之膠囊化造粒及其基本性質分析 77 4-6-2 改質膨潤土膠囊對Cs+及Sr2+離子之等溫吸附實驗 80 4-6-3 改質膨潤土膠囊之吸附平衡時間探討 83 4-6-4 管柱試驗 84 4-7 礦物膠囊玻璃化封存處理 87 第五章 總結論 90 5-1 結論 90 5-2 建議未來研究方向 93 參考文獻 94

    [1] Ojovan, M. I., & Lee, W. E. (2005). Introduction to Nuclear Waste Management.
    [2] Lee, W. E., Ojovan, M. I., Stennett, M. C., & Hyatt, N. C. (2006). Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Advances in Applied Ceramics, 105(1), 3-12.
    [3] Krylova, N. V., & Poluektov, P. P. (1995). Properties of solidified forms of high-level wastes as one of the barriers in the storage system. Atomic Energy, 78(2), 92-96.
    [4] Vipin, A. K., Hu, B., & Fugetsu, B. (2013). Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. Journal of hazardous materials, 258, 93-101.
    [5] Delchet, C., Tokarev, A., Dumail, X., Toquer, G., Barré, Y., Guari, Y., ... & Grandjean, A. (2012). Extraction of radioactive cesium using innovative functionalized porous materials. Rsc Advances, 2(13), 5707-5716.
    [6] Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685-695.
    [7] Ma, B., Shin, W. S., Oh, S., Park, Y. J., & Choi, S. J. (2010). Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Separation Science and Technology, 45(4), 453-462.
    [8] Smičiklas, I., Dimović, S., & Plećaš, I. (2007). Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35(1), 139-144.
    [9] Yu, S., Mei, H., Chen, X., Tan, X., Ahmad, B., Alsaedi, A., ... & Wang, X. (2015). Impact of environmental conditions on the sorption behavior of radionuclide 90 Sr (II) on Na-montmorillonite. Journal of Molecular Liquids, 203, 39-46.
    [10] Ma, B., Oh, S., Shin, W. S., & Choi, S. J. (2011). Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276(1), 336-346.
    [11] Marinin, D. V., & Brown, G. N. (2000). Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters. Waste Management, 20(7), 545-553.
    [12] Wu, Y., Kim, S. Y., Tozawa, D., Ito, T., Tada, T., Hitomi, K., ... & Ishii, K. (2012). Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. Journal of nuclear science and technology, 49(3), 320-327.
    [13] Chaufer, B., & Deratani, A. (1988). Removal of metal ions by complexation-ultrafiltration using water-soluble macromolecules: perspective of application to wastewater treatment. Nuclear and chemical waste management, 8(3), 175-187.
    [14] 顧翼東,化學辭典。臺北市:建宏出版社,(1994)
    [15] Borai, E. H., Harjula, R., & Paajanen, A. (2009). Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. Journal of Hazardous Materials, 172(1), 416-422.
    [16] Liang, T. J., & Tsai, J. Y. C. (1995). Sorption kinetics of cesium on natural mordenite. Applied Radiation and Isotopes, 46(1), 7-12.
    [17] Yildiz, N., & Çalimli, A. (2002). Alteration of Three Turkish Bentonites by Treatment with Na2CO3 and H2SO4. Turkish Journal of Chemistry, 26(3), 393-402.
    [18] Józefaciuk, G., Hoffmann, C., & Marschner, B. (2002). Effect of extreme acid and alkali treatment on pore properties of soil samples. Journal of Plant Nutrition and Soil Science, 165(1), 59.
    [19] Jozefaciuk, G., Hoffmann, C., Renger, M., & Marschner, B. (2000). Effect of extreme acid and alkali treatment on surface properties of soils. Journal of Plant Nutrition and Soil Science, 163(6), 595-601.
    [20] Sawhiney, B. (1972). Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner, 20(9).
    [21] Gates, W. P., Anderson, J. S., Raven, M. D., & Churchman, G. J. (2002). Mineralogy of a bentonite from Miles, Queensland, Australia and characterisation of its acid activation products. Applied Clay Science, 20(4), 189-197.
    [22] Ortiz, N., Pires, M. A. F., & Bressiani, J. C. (2001). Use of steel converter slag as nickel adsorber to wastewater treatment. Waste management, 21(7), 631-635.
    [23] Arifi, A., & Hanafi, H. A. (2011). Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. Asian Journal of Chemistry, 23(1), 111.
    [24] Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1), 306-318.
    [25] Manos, M. J., & Kanatzidis, M. G. (2009). Highly Efficient and Rapid Cs+ Uptake by the Layered Metal Sulfide K2 x Mn x Sn3− x S6 (KMS-1). Journal of the American Chemical Society, 131(18), 6599-6607.
    [26] Xiao, X., Xiong, S., Shi, Y., Shan, W., & Yang, S. (2016). Effect of H2O and SO2 on the Selective Catalytic Reduction of NO with NH3 Over Ce/TiO2 Catalyst: Mechanism and Kinetic Study. The Journal of Physical Chemistry C, 120(2), 1066-1076.
    [27] Yang, D. J., Zheng, Z. F., Zhu, H. Y., Liu, H. W., & Gao, X. P. (2008). Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials, 20(14), 2777-2781.
    [28] 易發成,錢光人,李玉香,(2004)。礦物材料對核素Sr、Cs的吸附性能研究,中國礦業,13,67-70.
    [29] Liang, T. J. (1999). The influence of cation concentration on the sorption of strontium on mordenite. Applied radiation and isotopes, 51(5), 527-532.
    [30] 孔繁凱,(2014)。天然絲光沸石與高嶺土對Cs+與Sr2+離子的特性研究及介孔二氧化矽膠囊包覆技術發,國立成功大學資源工程所,碩士論文.
    [31] Sparks, D. L. (2003). Environmental soil chemistry. Academic press.
    [32] Durce, D., Landesman, C., Grambow, B., Ribet, S., & Giffaut, E. (2014). Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: Batch and transport experiments. Journal of contaminant hydrology, 164, 308-322.
    [33] Liu, C., Zachara, J. M., Smith, S. C., McKinley, J. P., & Ainsworth, C. C. (2003). Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochimica et Cosmochimica Acta, 67(16), 2893-2912.
    [34] Grim, R. E. (1968). Clay mineralogy.
    [35] Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151(2), 682-691.
    [36] Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316(2), 298-309.
    [37] Bourg, I. C., Sposito, G., & Bourg, A. C. (2007). Modeling the acid–base surface chemistry of montmorillonite. Journal of Colloid and Interface Science, 312(2), 297-310.
    [38] Tombácz, E., Nyilas, T., Libor, Z., & Csanaki, C. (2004). Surface charge heterogeneity and aggregation of clay lamellae in aqueous suspensions. From Colloids to Nanotechnology, 206-215.
    [39] Avena, M. J., & De Pauli, C. P. (1998). Proton adsorption and electrokinetics of an Argentinean montmorillonite. Journal of Colloid and Interface Science, 202(1), 195-204.
    [40] Madrid, L., & DIAZ‐BARRIENTOS, E. (1988). Description of titration curves of mixed materials with variable and permanent surface charge by amathematical model. 1. Theory. 2. Application to mixtures of lepidocrocite and montmorillonite. European Journal of Soil Science, 39(2), 215-225.
    [41] Tabak, A., Afsin, B., Aygun, S. F., & Koksal, E. (2007). Structural characteristics of organo-modified bentonites of different origin. Journal of thermal analysis and calorimetry, 87(2), 377-382.
    [42] Abollino, O., Aceto, M., Malandrino, M., Sarzanini, C., & Mentasti, E. (2003). Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water research, 37(7), 1619-1627.
    [43] Fletcher, P., & Sposito, G. (1989). Chemical modeling of clay/electrolyte interactions of montmorillonite. Clay Minerals, 24(2), 375-391.
    [44] Balci, S. (1999). Effect of heating and acid pre-treatment on pore size distribution of sepiolite. Clay Minerals, 34(4), 647-655.
    [45] ÖNAL, M., SARIKAYA, Y., ALEMDAROĞLU, T., & BOZDOĞAN, İ. (2002). The effect of acid activation on some physicochemical properties of a bentonite. Turkish Journal of Chemistry, 26(3), 409-416.
    [46] Suarez Barrios, M., Buey, S., Garcia Romero, E., & Pozas, J. M. (2001). Textural and structural modifications of saponite from Cerro del Aguila by acid treatment. Clay Minerals, 36(4), 483-488.
    [47] Qiu, Y., Yu, S., Song, Y., Wang, Q., Zhong, S., & Tian, W. (2013). Investigation of solution chemistry effects on sorption behavior of Sr (II) on sepiolite fibers. Journal of Molecular Liquids, 180, 244-251.
    [48] Rodriguez, M. V., Barrios, M. S., Gonzalez, J. L., & Munoz, M. B. (1994). Acid activation of a ferrous saponite (griffithite): Physico-chemical characterization and surface area of the products obtained. Clays and clay minerals, 42(6), 724-730.
    [49] Bohn, H. L., McNeal, B. L., & O'Connor, G. A. (1979). Soil Chemistry. New York: J.
    [50] Balek, V., Malek, Z., Ehrlicher, U., Györyová, K., Matuschek, G., & Yariv, S. (2002). Emanation thermal analysis of TIXOTON (activated bentonite) treated with organic compounds. Applied Clay Science, 21(5), 295-302.
    [51] Myriam, M., Suarez, M., & Pozas, J. M. (1998). Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and clay minerals, 46(3), 225-231.
    [52] Stucki, J. W. (1996). Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44(2), 228-236.
    [53] Tessier, D., Dardaine, M., Beaumont, A., & Jaunet, A. M. (1998). Swelling pressure and microstructure of an activated swelling clay with temperature. Clay minerals, 33(2), 255-267.
    [54] Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
    [55] 周書葵,(2012)。放射性廢水處理技術。中國:化學工業出版社.
    [56] Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.
    [57] Ouki, S. K., & Kavannagh, M. (1997). Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Management & Research, 15(4), 383-394.
    [58] 鄺子薇,(2015)。礦物膠囊製程開發及其對Cs、Sr離子吸附性質之研究,國立成功大學資源工程所,碩士論文.
    [59] Ararem, A., Bouras, O., & Bouzidi, A. (2013). Batch and continuous fixed-bed column adsorption of Cs+ and Sr2+ onto montmorillonite–iron oxide composite: Comparative and competitive study. Journal of Radioanalytical and Nuclear Chemistry, 298(1), 537-545.
    [60] Poulopoulos, S. G., & Inglezakis, V. J. (2006). Adsorption, ion exchange and catalysis: design of operations and environmental applications. Elsevier.
    [61] Shu, H. Y., Chang, M. C., & Liu, J. J. (2016). Cation resin fixed-bed column for the recovery of valuable THAM reagent from the wastewater. Process Safety and Environmental Protection, 104, 571-586.
    [62] Ojovan, M. I., & Lee, W. E. (2013). An introduction to nuclear waste immobilisation. Newnes.
    [63] Kawatra, S. K., & Ripke, S. J. (2003). Laboratory studies for improving green ball strength in bentonite-bonded magnetite concentrate pellets. International Journal of Mineral Processing, 72(1), 429-441.
    [64] Xavier, K. C. M., Santos, M. D. S. F. D., Santos, M. R. M. C., Oliveira, M. E. R., Carvalho, M. W. N. C., Osajima, J. A., & Silva Filho, E. C. D. (2014). Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition. Materials Research, 17, 3-08.
    [65] Mosser, C., Michot, L. J., Villieras, F., & Romeo, M. (1997). Migration of cations in copper (II)-exchanged montmorillonite and laponite upon heating. Clays and Clay Minerals, 45(6), 789-802.
    [66] Yusan, S., & Erenturk, S. (2011). Adsorption characterization of strontium on PAN/zeolite composite adsorbent. World Journal of Nuclear Science and Technology, 1(01), 6.
    [67] Chegrouche, S., Mellah, A., & Barkat, M. (2009). Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination, 235(1), 306-318.
    [68] Guan, W., Pan, J., Ou, H., Wang, X., Zou, X., Hu, W., ... & Wu, X. (2011). Removal of strontium (II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics. Chemical Engineering Journal, 167(1), 215-222.
    [69] Garrone, E., Bonelli, B., Tsyganenko, A. A., Rodriguez Delgado, M., Turnes Palomino, G., Manoilova, O. V., & Otero Areán, C. (2003). Spectroscopic and Thermodynamic Characterization of Strontium Carbonyls Formed upon Carbon Monoxide Adsorption on the Zeolite Sr− Y. The Journal of Physical Chemistry B, 107(11), 2537-2542.
    [70] Gürboğa, G., & Tel, H. (2005). Preparation of TiO 2–SiO 2 mixed gel spheres for strontium adsorption. Journal of hazardous materials, 120(1), 135-142.
    [71] Kasap, S., Tel, H., & Piskin, S. (2011). Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium. Journal of Radioanalytical and Nuclear Chemistry, 289(2), 489-495.
    [72] Ma, B., Shin, W. S., Oh, S., Park, Y. J., & Choi, S. J. (2010). Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles. Separation Science and Technology, 45(4), 453-462.
    [73] Ghaemi, A., Torab-Mostaedi, M., & Ghannadi-Maragheh, M. (2011). Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. Journal of hazardous materials, 190(1), 916-921.
    [74] Palmer, M. R., Spivack, A. J., & Edmond, J. M. (1987). Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochimica et Cosmochimica Acta, 51(9), 2319-2323.
    [75] Griffin, R. A., Au, A. K., & Frost, R. R. (1977). Effect of pH on adsorption of chromium from landfill‐leachate by clay minerals. Journal of Environmental Science & Health Part A, 12(8), 431-449.
    [76] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
    [77] Langley, S., Gault, A. G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., ... & Ferris, F. G. (2009). Sorption of strontium onto bacteriogenic iron oxides. Environmental science & technology, 43(4), 1008-1014.
    [78] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
    [79] Shabana, E., & El-Dessouky, M. (2002). Sorption of cesium and strontium ions on hydrous titanium dioxide from chloride medium. Journal of radioanalytical and nuclear chemistry, 253(2), 281-284.
    [80] Venkatesan, K. A., Selvam, G. P., & Rao, P. V. (2000). Sorption of strontium on hydrous zirconium oxide. Separation Science and Technology, 35(14), 2343-2357.
    [81] Kuyyalil, J., Newby, D., Laverock, J., Yu, Y., Cetin, D., Basu, S. N., ... & Smith, K. E. (2015). Vacancy assisted SrO formation on La 0.8 Sr 0.2 Co 0.2 Fe 0.8 O 3− δ surfaces—A synchrotron photoemission study. Surface Science, 642, 33-38.
    [82] Tiwari, D., & Lee, S. M. (2015). Physico-chemical studies in the removal of Sr (II) from aqueous solutions using activated sericite. Journal of environmental radioactivity, 147, 76-84.
    [83] Faghihian, H., Iravani, M., & Moayed, M. (2015). Application of PAN‐NaY Composite for CS+ and SR2+ Adsorption: Kinetic and Thermodynamic Studies. Environmental Progress & Sustainable Energy, 34(4), 999-1008.
    [84] Ozeki, K., & Aoki, H. (2016). Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances. Bio-medical materials and engineering, 27(2-3), 227-236.
    [85] Kuronen, M., Harjula, R., Jernström, J., Vestenius, M., & Lehto, J. (2000). Effect of the framework charge density on zeolite ion exchange selectivities. Physical Chemistry Chemical Physics, 2(11), 2655-2659.
    [86] Munthali, M. W., Elsheikh, M. A., Johan, E., & Matsue, N. (2014). Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites. Molecules, 19(12), 20468-20481.
    [87] Kuronen, M., Weller, M., Townsend, R., & Harjula, R. (2006). Ion exchange selectivity and structural changes in highly aluminous zeolites. Reactive and Functional Polymers, 66(11), 1350-1361.
    [88] Xue, X., & Stebbins, J. F. (1993). 23 Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Physics and Chemistry of Minerals, 20(5), 297-307.
    [89] 潘瑋,(2012)。銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討,國立成功大學資源工程所,碩士論文
    [90] Munthali, M. W., Johan, E., Aono, H., & Matsue, N. (2015). Cs+ and Sr 2+ adsorption selectivity of zeolites in relation to radioactive decontamination. Journal of Asian Ceramic Societies, 3(3), 245-250.
    [91] 丁大虎. (2014). Removal of Cesium from Aqueous Solution by Using Newly Developed Adsorbents and Comparative Study (Doctoral dissertation, 筑波大学 (University of Tsukuba)).
    [92] Al Lafi, A. G., & Al Abdullah, J. (2015). Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation. Journal of Molecular Structure, 1093, 13-23.
    [93] Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.
    [94] Hashemian, S., Saffari, H., & Ragabion, S. (2015). Adsorption of cobalt (II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water, Air, & Soil Pollution, 226(1), 2212.
    [95] Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2011). Adsorption of cobalt (II) from aqueous solution onto hydroxyapatite/zeolite composite. Adv Mater Lett, 2(4), 309-312.
    [96] Abbas, M., Kaddour, S., & Trari, M. (2014). Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. Journal of Industrial and Engineering Chemistry, 20(3), 745-751.
    [97] Krishnan, K. A., & Anirudhan, T. S. (2008). Kinetic and equilibrium modelling of cobalt (II) adsorption onto bagasse pith based sulphurised activated carbon. Chemical Engineering Journal, 137(2), 257-264.
    [98] Suhasini, I. P., Sriram, G., Asolekar, S. R., & Sureshkumar, G. K. (1999). Biosorptive removal and recovery of cobalt from aqueous systems. Process Biochemistry, 34(3), 239-247.
    [99] Gutierrez, M., & Fuentes, H. R. (1991). Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions. Journal of Environmental Radioactivity, 13(4), 271-282.
    [100] Sachse, A., Merceille, A., Barré, Y., Grandjean, A., Fajula, F., & Galarneau, A. (2012). Macroporous LTA-monoliths for in-flow removal of radioactive strontium from aqueous effluents: application to the case of Fukushima. Microporous and Mesoporous Materials, 164, 251-258.
    [101] Lee, H. Y., Kim, H. S., Jeong, H. K., Park, M., Chung, D. Y., Lee, K. Y., ... & Lim, W. T. (2017). Selective Removal of Radioactive Cesium from Nuclear Waste by Zeolites: On the Origin of Cesium Selectivity Revealed by Systematic Crystallographic Studies. The Journal of Physical Chemistry C, 121(19), 10594-10608.
    [102] Ryu, J., Kim, S., Hong, H. J., Hong, J., Kim, M., Ryu, T., ... & Kim, B. G. (2016). Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: Removal vs. recovery. Chemical Engineering Journal, 304, 503-510.
    [103] Tu, Y. J., You, C. F., Zhang, Z., Duan, Y., Fu, J., & Xu, D. (2016). Strontium Removal in Seawater by Means of Composite Magnetic Nanoparticles Derived from Industrial Sludge. Water, 8(8), 357.
    [104] Sangvanich, T., Sukwarotwat, V., Wiacek, R. J., Grudzien, R. M., Fryxell, G. E., Addleman, R. S., ... & Yantasee, W. (2010). Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of hazardous materials, 182(1), 225-231.
    [105] Yi, R., Ye, G., Wu, F., Wen, M., Feng, X., & Chen, J. (2014). Highly efficient removal of 137 Cs in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core–shell structure. RSC Advances, 4(71), 37600-37608.
    [106] Sarkar, M., Acharya, P. K., & Bhattacharya, B. (2003). Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science, 266(1), 28-32.
    [107] Ojovan, M. I., & Batyukhnova, O. G. (2007). Glasses for nuclear waste immobilization. WM, 7, 15.
    [108] Mikulaj, V., Hlatky, J., & Vašekova, L. (1986). An emulsion membrane extraction of strontium and its separation from calcium utilizing crowns and picric acid. Journal of radioanalytical and nuclear chemistry, 101(1), 51-57.
    [109] Eroǧlu, İ., Kalpakçi, R., & Gündüz, G. (1993). Extraction of strontium ions with emulsion liquid membrane technique. Journal of membrane science, 80(1), 319-325.
    [110] Hamed, M. M., Attallah, M. F., & Metwally, S. S. (2014). Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochimica Acta, 102(11), 1017-1024.
    [111] Tazoe, H., Obata, H., Yamagata, T., Nagai, H., & Yamada, M. (2016). Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring. Talanta, 152, 219-227.
    [112] Xu, C., Wang, J., & Chen, J. (2012). Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extraction and Ion Exchange, 30(6), 623-650.
    [113] Swain, B., Cho, S. S., Lee, G. H., Lee, C. G., & Uhm, S. (2015). Extraction/Separation of Cobalt by Solvent Extraction: A Review. Applied Chemistry for Engineering, 26(6), 631-639.
    [114] Sinkó, K., Hüsing, N., Goerigk, G., & Peterlik, H. (2008). Nanostructure of gel-derived aluminosilicate materials. Langmuir, 24(3), 949-956.
    [115] Brandhuber, D., Torma, V., Raab, C., Peterlik, H., Kulak, A., & Hüsing, N. (2005). Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of materials, 17(16), 4262-4271.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE