| 研究生: |
邱恒伃 Chiu, Heng-Yu |
|---|---|
| 論文名稱: |
可抑制交流抵補電壓之電容式單軸加速器設計 Design of a Single-Axis Capacitive Accelerometer with AC Offset Cancellation Circuit |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 交流抵補電壓抑制 、電容式加速度感測器 、全差分電容電橋 、訊號處理電路 |
| 外文關鍵詞: | AC Offset Cancellation Circuit, Capacitive Accelerometer, Fully Differential Capacitive Bridge, Signal Processing Circuit |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於現今台灣少子化的現象,未來可能會面臨到醫療人力嚴重不足,因此目前趨勢是結合穿戴式醫療裝置、遠端醫療、雲端系統等科技來減輕人力負荷。為了將加速度感測器應用於穿戴式裝置上,本論文實現一單軸電容式加速度感測系統,選用CMOS-MEMS製程設計電容式加速度感測器,並且定期重置電容橋輸出,減少來自感測器電容充放電所造成的輸出偏壓偏移。此外,透過後端處理電路的交流抵補電壓抑制技術,消除前端電容式加速度感測器不匹配所產生之交流抵補電壓,以免在高放大倍率時輸出訊號飽和。藉由將感測器與積體電路整合於單晶片,降低加速規的體積與成本。
本晶片使用台積電(TSMC) 0.35 μm CMOS/MEMS 2P4M 3.3V 混合訊號製程加上微機電後製程製作,以40 S/B 封裝,晶片總面積為2.429×2.068mm2,包含感測器及訊號處理電路。由加速度振動量測平台(Shaker)提供加速度應力,此晶片在±8g的感測範圍下有69.11(mVpp/g)的靈敏度,全系統含感測器的總消耗功率為1.89mW。
Owing to the recent trend of fewer children and more elders in Taiwan, we might face the shortage of the medical personnel in the future. One of the solutions is to combine high technologies, such as wearable devices, telemedicine, and cloud computing, with hospitals, so that it can lessen the burden on caregivers. In order to apply the accelerometer to wearable devices, a single-axis capacitive accelerometer system has been implemented, whose sensor is made by micro-electromechanical system (MEMS) process. The capacitor bridge outputs are reset to dc voltage regularly for reducing the bias voltage drift caused by the undesirable charging and discharging from the capacitive accelerometer. Besides, an ac offset cancellation loop is proposed to suppress the offset voltage originated from the mismatches in the MEMS sensor, so the mismatch-induced offset would not saturate the chip output. The integration of the MEMS sensor and the complementary metal-oxide-semiconductor (CMOS) circuits significantly reduces the instrument size and costs.
The proposed chip, fabricated by Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm 2P4M mixed-signal standard CMOS process and MEMS post process, consists of the front-end sensor and the back-end signal processing circuits, and it occupies 2.429×2.068-mm2 area. The measured sensitivity is 69.11(mVpp/g) within the ±8g sensing range, and the power consumption of the chip is 1.89mW with a 3.3V power supply.
[1] 匯流新聞網(2018),「跌倒偵測、顧心臟!Apple Watch新功能好健康」,參考來源:https://cnews.com.tw/002181106a03/
[2] M. Haris and H. Qu, “A CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass,” in Proc. 5th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen-China, Jan. 2010, pp. 309–312.
[3] C. Saayujya, J. S.-Q. Tan, Y. Yuan, Y.-R. Wong, and H. Du, “Design, fabrication and characterization of a zinc oxide thin-film piezoelectric accelerometer,” in Proc. IEEE 9th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, Apr. 2014, pp.1–6.
[4] D. Goustouridias, G. Kaltsas, and A. G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation,” IEEE Sensors J., vol. 7, no. 7, pp. 983–989, Jul. 2007.
[5] P.-C. Wu, B.-D. Liu, S.-H. Tseng, H.-H. Tsai, and Y.-Z. Juang, “Digital Offset Trimming Techniques for CMOS MEMS Accelerometers,” IEEE Sensors Journal, vol. 14, no. 2, pp. 570–577, Feb. 2014.
[6] S.-M. Tseng, “Single-Axis CMOS-MEMS Capacitive Accelerometer with Post-Processing Circuits,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jan. 2017.
[7] A.-Y. Chang, and P.-C Chen., Lecture Notes for CMOS MEMS Sensor Design Concept, National Applied Research Laboratories, Hsinchu, Taiwan, R.O.C., Jul. 2015.
[8] B. Grinberg, A. Feingold, L. Furman, and R. Wolfson, “High precision open-loop and closed-loop MEMS accelerometers with wide sensing range,” in IEEE/ION Position, Location and Navigation Symposium (PLANS), U.S.A., Apr. 2016, pp.924–931.
[9] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 722–730, May 2004.
[10] D. Fang, “Low Noise and Low Power Interface Circuit Design for Integrated CMOS MEMS Inertial Sensors,” Ph.D. thesis, Dept. of Elect. & Comp. Eng., Univ. of Florida, Florida, U.S.A., May 2006.
[11] H. Sun, D. Fang, K. Jia, F. Maarouf , H. Qu, and H. Xie, “A Low-Power Low-Noise Dual-Chopper Amplifier for Capacitive CMOS-MEMS Accelerometers,” IEEE Sensors Journal, vol. 11, no. 4 , pp.925–933, Apr. 2011.
[12] G. Royo, M. Garcia-Bosque, C. Sánchez-Azqueta, C. Aldea, S. Celma, and C. Gimeno, “Transimpedance amplifier with programmable gain and bandwidth for capacitive MEMS accelerometers,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Italy, May 2017, pp.1–5.
[13] J. Jun, C. Rhee, S. Kim, and S. Kim, “An SC Interface With Programmable-Gain Embedded ΔΣADC for Monolithic Three-Axis 3-D Stacked Capacitive MEMS Accelerometer,” IEEE Sensors Journal, vol. 17, no. 17, Sept. 2017.
[14] B. V. Amini, and F. Ayazi, “A 2.5-V 14-bit ΣΔ CMOS SOI Capacitive Accelerometer,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, Dec. 2004.
[15] F. Chen, X. Li, and M. Kraft, “Electromechanical Sigma–Delta Modulators (Ʃ∆M) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review,” IEEE Sensors Journal, vol. 16, no. 17, Sept. 2016.
[16] H. Xu, X. Liu, and L. Yin, “A Closed-Loop Ʃ∆ Interface for a High-Q Micromechanical Capacitive Accelerometer With 200 ng/√Hz Input Noise Density,” IEEE Journal of Solid-State Circuits, vol. 50, no. 9, Sept. 2015.
[17] M. Lemkin, and B. E. Boser, “A Three-Axis Micromachined Accelerometer with a CMOS Position-Sense Interface and Digital Offset-Trim Electronics,” IEEE Journal of Solid-State Circuits, vol. 34, no. 4, Apr. 1999.
[18] M. Sun, “Implementation and Development Double side CMOS MEMS Platform for Sensors Integration,” Ph.D. dissertation, Inst. of NanoEngineering and MicroSyst., National Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., May 2010.
[19] C.-T. Chiang, “Design of a CMOS MEMS Accelerometer Used in IoT Devices for Seismic Detection,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3, Sept. 2018, pp. 566–577.
[20] Y.-C. Lin, “Design of a Temperature-Insensitive Micro Cantilever-Based Respiration Detection Chip,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
[21] M.-K. Tsai, T.-A. Chen, H.-Y. Chiu, T.-W. Wu, and C.-L. Wei, “Monolithic Airflow Detection Chip with Automatic DC Offset Calibration,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 107–117, Jan. 2018.
[22] C. C. Enz, and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” in Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov. 1996.
[23] K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits Syst., vol. 36, no. 9, pp. 1210–1216, Sep. 1989.
[24] C.-L. Wei, Lecture Notes for Special Topics on Integrated Circuits Design, National Cheng Kung Univ., Tainan, Taiwan, R.O.C., 2016.
[25] C.-L. Wei, Y.-W. Wang, and B.-D. Liu, “Wide-Range Filter-Based Sinusoidal Wave Synthesizer for Electrochemical Impedance Spectroscopy Measurements,” IEEE Transactions on Biomedical Circuits and Systems (TBCAS), vol. 8, no. 3, pp. 442–450, Jun. 2014.
[26] M.-K. Tsai, “Design of a Respiration Detection Chip with DC Offset Calibration Technique,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Nov. 2014.
[27] Y.-C. Liu, M.-H. Tsai, S.-S. Li, and W. Fang “A fully-differential, multiplex-sensing interface circuit monolithically integrated with tri-axis pure oxide capacitive CMOS-MEMS accelerometers” in Proc. 17th Int. Conf. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Jun. 2013, pp. 610–613.