| 研究生: |
陳侑利 Tan, Yu-Lee |
|---|---|
| 論文名稱: |
利用流體化床均質顆粒化技術以鐵鹽回收水溶液磷酸之研究 Phosphate Recovery in Fluidized-bed Homogeneous Granulation (FBHG) by using Iron |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 流體化床顆粒化技術 、均相成核 、磷酸回收 |
| 外文關鍵詞: | Fluidized-bed Granulation, Homogenous Nucleation, Phosphate Recovery |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於台灣TFT-LCD廠排放高濃度含磷廢水,本研究利用人工配製模擬之含磷廢水,建立流體化床均質顆粒化技術,以亞鐵回收廢水中之磷酸鹽。
本研究使用Fe^(2+)作為反應的藥劑,先以瓶杯實驗進行化學沉澱實驗,藉由pH值、磷酸初始濃度、雙氧水添加濃度,去了解微溶物系之pH沉澱區間。在瓶杯實驗的基礎上,利用流體化床反應器製造均質顆粒,並以均質顆粒於流體化床中處理濃度為5 mM (150mg-P/L)之含磷溶液,探討pH值、鐵磷進料莫爾、雙氧水濃度及截面積負荷對於回收磷酸的影響。最後,再將流體化床反應器中所產生的均質顆粒取出,進行SEM、EDS、TGA及XRD的檢測。
於雙氧水及亞鐵除磷系統中,在pH值小於4.2的溶液中,添加雙氧水有助於提高亞鐵除磷的效果。在化學沉澱實驗中,pH值會影響除磷的效果。最佳操作pH值=2.5,除磷率為92.84%,磷酸濃度為0.35 mM(11 mg-P/L)。在流體化床除磷實驗中,出流水pH值會影響反應器之截面積負荷極限。最佳操作條件為:截面負荷=0.89 Kg-P/(m2hr)、H2O2/Fe2+進料莫爾比=0.6、pH值= 2.6、Fe/P進料莫爾比= 1.2,去除率可達94.8 %,顆粒化率達85.8 %。流體化床均質顆粒經過6小時鍛燒後,經資料庫比對,發現顆粒為Rodolicoite及Grattarolait晶型的混合物。均質顆粒溶於王水經ICP分析後,確認其Fe/P莫爾比例為1.01。
於亞鐵除磷系統,在化學沉澱實驗中,最佳操作pH值為6.13,此時,除磷率為92.75%,磷酸濃度為0.27mM(8.35 mg-P/L),殘餘溶解性鐵以亞鐵為主。在流體化床除磷實驗中,最佳操作條件為:截面負荷=0.96 Kg-P/(m2 hr)、pH值=5.6、Fe/P=1.5,除磷率為61.1%,顆粒化率為52%。經6小時鍛燒後,經資料庫比對,可得知流體化床均質顆粒為Rodolicoite及Grattarolait晶型之混合物。均質顆粒溶於王水經ICP分析後,確認其Fe/P莫爾比例為1.35。
The objective of this study was to focus on the recovery of phosphorus-containing wastewater from TFT-LCD factory by using Fluidized-bed Homogeneous Granulation Technology. In this study, synthesis phosphorus-containing wastewater was prepared in the laboratory.
In the first stage, ferrous cation was used as the coagulant to carry out the chemical precipitation. The optimal conditions for precipitating the metallic phosphate could be determined by the assessment of experimental parameters, including pH, initial concentration of phosphate hydrogen peroxide. Secondly, on the basis of results in chemical precipitation, parameters of FBHG were designed, including pH of effluent, molar ratio of ferric cation to phosphate, concentration of hydrogen peroxide and cross section loading for determining the optimal operating condition. The pellets from FBHG were determined by SEM, XRD and TGA.
In ferrous and hydrogen peroxide system, removal of phosphate was improved in the presence of hydrogen peroxide. In the chemical precipitation stage, the optimal pH was 2.50 and the phosphate removal was 92.8%. In FBHG stage, for a feed level of 5 mM-P (150 mg-P/L),the optimal parameters were loading =0.89 Kg-P/(m^2∙hr), H2O2/Fe2 molar ratio=0.6, pH_e = 2.6, Fe/P molar ratio= 1.2, 85.8 % of granulation ratio and 94.8 % of removal efficiency were achieved. After annealing, the XRD patterns indicated that pellets from FBHG were composed of the mixtures of Rodolicoite and Grattarolait.
In the chemical precipitation stage of ferrous system, the optimal pH was 6.13 and the phosphate removal was 92.7 %. In FBHG stage, for a feed level of 4 mM-P (120 mg-P/L),the optimal parameters were loading =0.96 Kg-P/(m^2∙hr), pH_e = 5.6, Fe/P molar ratio= 1.5, 52 % of granulation ratio and 61 % of removal efficiency were achieved. After annealing, the XRD patterns indicated that pellets from FBHG composed of the mixtures of Rodolicoite and Grattarolait.
[1] D. Cordell, The Story of Phosphorus : Sustainability implications of global phosphorus scarcity for food security, in: Linköping University, Department of Water and Environmental Studies, Linköping University, Department of Water and Environmental Studies, 2010.
[2] 張鈞期, 不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究, in: 化學工程學系碩博士班, 成功大學, 台灣, 2009, pp. 118.
[3] 張華強, 以流體化床反應器開發均相成核與結晶之新穎除磷技術, in: 化學工程學系, 成功大學, 2012, pp. 1-107.
[4] 光電業資源化應用技術手冊: 薄膜電晶體液晶顯示器, 工業局, 2003.
[5] 高瑛紜, 劉蘭萍, 王義基, 液晶面板製造業廢棄物資源化現況評析, in: 綠基會通訊, 2008年8月, pp. 6~9.
[6] U. Berg, G. Knoll, E. Kaschka, P.G. Weidler, R. Nuesch, Is phosphorus recovery from waste water feasible?, Environmental Technology, 28 (2007) 165-172.
[7] 吳峻豪, 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究, in: 環境工程與管理系, 朝陽科技大學, 2013.
[8] Metcalf & Eddy, G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater engineering : treatment and reuse, 4th ed., McGraw-Hill, Boston; London, 2003.
[9] J. Thistleton, T. Berry, P. Pearce, S. Parsons, Mechanisms of Chemical Phosphorus Removal IIIron (III) Salts, Process Safety and Environmental Protection, 80 (2002) 265-269.
[10] Y.H. Huang, Y.J. Shih, C.C. Chang, S.H. Chuang, A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process, Desalin. Water Treat., 32 (2011) 351-356.
[11] D. Obaja, S. Macé, J. Costa, C. Sans, J. Mata-Alvarez, Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor, Bioresource Technology, 87 (2003) 103-111.
[12] G.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review: Phosphorus removal and recovery technologies, Science of the Total Environment, 212 (1998) 69-81.
[13] K. Van den Broeck, N. Van Hoornick, J. Van Hoeymissen, R. de Boer, A. Giesen, D. Wilms, Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor, IEEE Trans. Semicond. Manuf., 16 (2003) 423-428.
[14] 詹豐隆, 含鎳廢水流體化床結晶處理技術之應用, in: 臺灣大學環境工程學研究所學位論文, 臺灣大學, 2004, pp. 1-82.
[15] D. Wilms, K. Vercaemst, J.C. Van Dijk, Recovery of silver by crystallization of silver carbonate in a fluidized-bed reactor, Water Res, 26 (1992) 235-239.
[16] D. Guillard, A.E. Lewis, Nickel Carbonate Precipitation in a Fluidized-Bed Reactor, Industrial & Engineering Chemistry Research, 40 (2001) 5564-5569.
[17] C.-I. Lee, W.-F. Yang, C.-I. Hsieh, Removal of Cu(II) from aqueous solution in a fluidized-bed reactor, Chemosphere, 57 (2004) 1173-1180.
[18] J.P. Chen, H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 35 (2000) 817-835.
[19] 陳政澤, 流體化床結晶反應槽回收廢水中重金屬鎘之研究, in: 環境工程研究所, 國立中央大學, 1995.
[20] 李茂松, 流體化床結晶技術在無機廢水處理上應用性研究, in: 化學學系, 中原大學, 1993.
[21] M.M. Seckler, O.S.L. Bruinsma, G.M. Van Rosmalen, Phosphate removal in a fluidized bed--I. Identification of physical processes, Water Res, 30 (1996) 1585-1588.
[22] P. Battistoni, G. Fava, P. Pavan, A. Musacco, F. Cecchi, Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: Preliminary results, Water Res, 31 (1997) 2925-2929.
[23] P. Battistoni, A. De Angelis, P. Pavan, M. Prisciandaro, F. Cecchi, Phosphorus removal from a real anaerobic supernatant by struvite crystallization, Water Res, 35 (2001) 2167-2178.
[24] P. Battistoni, A. De Angelis, M. Prisciandaro, R. Boccadoro, D. Bolzonella, P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling, Water Res, 36 (2002) 1927-1938.
[25] P. Battistoni, R. Boccadoro, F. Fatone, P. Pavan, Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR), Environmental Technology, 26 (2005) 975-982.
[26] P. Battistoni, B. Paci, F. Fatone, P. Pavan, Phosphorus removal from supernatants at low concentration using packed and fluidized-bed reactors, Industrial & Engineering Chemistry Research, 44 (2005) 6701-6707.
[27] 劉志忠, 流體化床結晶法去除水中磷酸鹽之研究, in: 環境工程學系, 國立中央大學, 1998.
[28] 李明政, 流體化床結晶處理技術應用於養豬廢水之研究, in: 環境工程學研究所, 國立台灣大學, 1998.
[29] A. Giesen, Crystallisation process enables environmental friendly phosphate removal at low costs, Environmental Technology, 20 (1999) 769-775.
[30] E.V. Munch, K. Barr, Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams, Water Res, 35 (2001) 151-159.
[31] K. Suzuki, Y. Tanaka, T. Osada, M. Waki, Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration, Water Res, 36 (2002) 2991-2998.
[32] K. Suzuki, Y. Tanaka, K. Kuroda, D. Ranajima, Y. Fukumoto, T. Yasuda, The technology of phosphorous removal and recovery from swine wastewater by struvite crystallization reaction, Jarq-Japan Agricultural Research Quarterly, 40 (2006) 341-349.
[33] K. Suzuki, Y. Tanaka, K. Kuroda, D. Hanajima, Y. Fukumoto, T. Yasuda, M. Waki, Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresource Technology, 98 (2007) 1573-1578.
[34] K. Shimamura, T. Tanaka, Y. Miura, H. Ishikawa, Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system, Water Science and Technology, 48 (2003) 163-170.
[35] K. Shimamura, I. Hirasawa, H. Ishikawa, T. Tanaka, Phosphorus recovery in a fluidized bed crystallization reactor, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 39 (2006) 1119-1127.
[36] K. Shimamura, H. Ishikawa, T. Tanaka, I. Hirasawa, Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery, Water Environment Research, 79 (2007) 406-413.
[37] K. Shimamura, H. Ishikawa, A. Mizuoka, I. Hirasawa, Development of a process for the recovery of phosphorus resource from digested sludge by crystallization technology, Water Science and Technology, 57 (2008) 451-456.
[38] K. Shimamura, T. Kurosawa, I. Hirasawa, A System having a Crystallization Process for Phosphorus Recovery from Methane Fermentation Digested Sludge, Kagaku Kogaku Ronbunshu, 35 (2009) 127-132.
[39] J. Wang, Y. Song, P. Yuan, J. Peng, M. Fan, Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery, Chemosphere, 65 (2006) 1182-1187.
[40] Y. Song, P. Yuan, B. Zheng, H. Peng, F. Yuan, Y. Gao, Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater, Chemosphere, 69 (2007) 319-324.
[41] G. Qiu, Y. Song, P. Zeng, S. Xiao, L. Duan, Phosphorus recovery from fosfomycin pharmaceutical wastewater by wet air oxidation and phosphate crystallization, Chemosphere, 84 (2011) 241-246.
[42] C.-C. Su, C.-M. Chen, J. Anotai, M.-C. Lu, Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized-bed Fenton process, Chemical Engineering Journal, 222 (2013) 128-135.
[43] 周連智, 應用流體化結晶床處理含磷廢水之研究—以TFT-LCD廠為例, in: 環境工程研究所, 國立中央大學, 2012.
[44] W. Stumm, J.J. Morgan, Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, Wiley, 1981.
[45] W.L. McCabe, J. Smith, P. Harriott, Unit Operations of Chemical Engineering, McGraw-Hill Education, 2005.
[46] A.E. Nielsen, Electrolyte crystal growth mechanisms, Journal of Crystal Growth, 67 (1984) 289-310.
[47] H. Fadrus, J. Maly, Suppression of iron(III) interference in the determination of iron(II) in water by the 1,10-phenanthroline method, Analyst, 100 (1975) 549-554.
[48] D.I. Metelitsa, Mechanisms of the Hydroxylation of Aromatic Compounds, Russian Chemical Reviews, 40 (1971) 563.
[49] Z. Stuglik, Z. PawełZagórski, Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals, Radiation Physics and Chemistry (1977), 17 (1981) 229-233.
[50] V.C.T. Costodes, A.E. Lewis, Reactive crystallization of nickel hydroxy-carbonate in fluidized-bed reactor: Fines production and column design, Chemical Engineering Science, 61 (2006) 1377-1385.
[51] L. Qian, Y. Xia, W. Zhang, H. Huang, Y. Gan, H. Zeng, X. Tao, Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials, Microporous and Mesoporous Materials, 152 (2012) 128-133.
[52] Y. Yin, P. Wu, H. Zhang, C. Cai, Enhanced cathode performances of amorphous FePO4 hollow nanospheres with tunable shell thickness in lithium ion batteries, Electrochemistry Communications, 18 (2012) 1-3.