簡易檢索 / 詳目顯示

研究生: 林泓賢
Lin, Hung-Hsien
論文名稱: 利用鈉系焚化反應灰進行 Solvay 製鹼法合成碳酸氫鈉之研究
A Study on the Synthesis of Sodium Bicarbonate via the Solvay Process Using Sodium-Based Incineration Reaction Ash
指導教授: 陳偉聖
Chen, Wei-sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 68
中文關鍵詞: 焚化飛灰碳酸氫鈉循環利用
外文關鍵詞: Solvay Process , Incineration Fly Ash, Sodium Bicarbonate, Resource Recycling, CCU
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對焚化飛灰做資源循環及加值化,材料來源為來自新北市某焚化爐之一般廢棄物焚化飛灰。本實驗流程分成三大部分。第一部分為化學組成分析、水洗及酸洗比較:將焚化飛灰以XRD、XRF、TCLP、三成分分析及ICP-OES半定量、ICP-OES全定量分析、硫酸鹽-濁度劑、鹼度-滴定法等方法對焚化飛灰進行全方面分析得到焚化飛灰的化學組成,接著以固液比1:10分別以鹽酸及去離子水溶解後通過酸洗及水洗並以500rpm攪拌,待攪拌完成後,以抽氣過濾漏斗過濾並取其過濾後溶液,使用ICP定量分析,以此基礎比較溶出離子種類多寡以決定後續處理方法。
    本研究之第二部分為模擬焚化飛灰水洗溶液的Solvay Process實驗,因此研究非採用工業式連續生產製程,受到二氧化碳通入量、氯化鈉濃度、反應環境溫度三大因素影響,故需要找到二氧化碳通氣量、氯化鈉濃度、Solvay Process反應溫度三個最佳參數數據,氨水添加量均為氯化鈉莫爾數的3.3倍。
    最後一部分為焚化飛灰水洗溶液的Solvay Process實驗,通過第二部分所取得之數據,將最佳參數套用至焚化飛灰水洗溶液的Solvay Process實驗,由於Solvay Process的特性,其產物為碳酸氫鈉居多,通過烘乾後得到產物固體。經過XRD分析及使用鹼度滴定法測定其成分組成,可得知使用焚化飛灰水洗溶液是否能當作Solvay Process 之原料並再次利用以得到高純度碳酸鈉與碳酸氫鈉混合物並達成廢棄物循環利用之目的。

    This study investigates the resource recycling of sodium-based incineration fly ash by integrating the Solvay Process to synthesize sodium bicarbonate. The primary scope and objective are to develop a circular economy model that simultaneously addresses waste reduction, resource recovery, and carbon capture and utilization (CCU). The methodology involved comprehensive characterization of fly ash using XRD, XRF, and ICP-OES, followed by a pretreatment comparison between water washing and acid leaching. Process parameters, including carbon dioxide flow rate and reaction temperature, were optimized using simulated solutions before being applied to actual fly ash washing filtrate. Results indicated that water washing effectively dissolved sodium chloride while stabilizing heavy metals, whereas acid leaching released significant toxic elements. The optimal reaction conditions were identified as a carbon dioxide molar ratio of 1.25 relative to sodium chloride and a temperature of 25°C. Applying these parameters to actual fly ash filtrate yielded a sodium removal rate of 79.59%, surpassing typical industrial standards of 72-76%. The synthesized product was confirmed to be a mixture of sodium bicarbonate and Trona. The principal conclusion is that sodium-based fly ash is a viable raw material for the Solvay Process. This approach successfully converts hazardous waste into valuable carbonate products while sequestering carbon dioxide, offering a feasible solution for sustainable waste management and economic value creation.

    中文摘要i ABSTRACTii 誌謝vi 目錄vii 表目錄xi 圖目錄xii 第一章 緒論1 1.1 前言1 1.2 研究動機與目的3 第二章 文獻探討4 2.1 焚化飛灰性質概述4 2.2 焚化飛灰資源化技術4 2.2.1 波特蘭水泥4 2.2.2 製備沸石5 2.2.3 建築材料6 2.2.4 濕法冶金技術應用於提煉焚化飛灰中金屬元素6 2.2.5 農業方面應用8 2.3 鈉之特性概述8 2.4 碳酸氫鈉之性質及使用現況9 2.5 索維爾製鹼法(Solvay Process)9 2.5.1 索維爾製鹼法概述[60]9 2.5.2 索維爾製鹼法熱力學 12 2.5.3 碳酸氫鈉脫硫除酸藥劑規範13 第三章 研究方法14 3.1 研究藥品14 3.1.1 實驗樣品14 3.1.2 實驗藥品14 3.2 實驗架構16 3.3 實驗設計17 3.4 實驗流程18 3.4.1 焚化飛灰之特性分析18 3.4.2 酸洗及水洗18 3.4.3 水洗餘渣18 3.4.4 焚化飛灰氯化鈉溶出上限19 3.4.5 探討二氧化碳通氣量對Solvay Process 之影響19 3.4.6 探討溫度對Solvay Process 之影響20 3.4.7 飛灰水洗溶液之固液比及Solvay Process鈉去除率20 3.4.8 以飛灰水洗溶液進行Solvay Process21 3.4.9 以滴定法檢測樣品純度21 3.4.10 飛灰三成分分析21 3.5 實驗設備及儀器22 3.5.1 電子顯微鏡分析22 3.5.2 雷射粒徑分析儀22 3.5.3 X光繞射分析儀(XRD)22 3.5.4 X光螢光光譜儀(XRF)23 3.5.5 毒性特性溶出程序23 3.5.6 金屬成分半定量分析23 3.5.7 金屬成分全定量分析23 3.5.8 濁度劑24 3.5.9 EA元素分析儀24 3.5.10 氯離子電極24 第四章 結果與討論25 4.1 焚化飛灰之特性分析25 4.1.1 焚化飛灰表面性質分析25 4.1.2 焚化飛灰DLS粒徑分析26 4.1.3 焚化飛灰XRD分析27 4.1.4 焚化飛灰XRF分析29 4.1.5 毒性特性溶出程序30 4.1.6 金屬成分半定量分析30 4.1.7 酸洗及水洗對金屬離子溶出影響32 4.1.8 鹼度-滴定法33 4.1.9 硫酸鹽-濁度法33 4.1.10 EA元素分析34 4.1.11 水分、有機分、灰分分析34 4.1.12 氯離子分析結果35 4.1.13 水洗餘渣成分分析35 4.1.14 飛灰化學組成37 4.2 模擬飛灰水洗溶液進行Solvay Process38 4.2.1 焚化飛灰氯化鈉溶出上限38 4.2.2 二氧化碳通氣量對Solvay Process 之影響38 4.2.3 溫度對Solvay Process 之影響40 4.3 飛灰水洗溶液之固液比及其Solvay Process鈉去除率41 4.3.1 使用飛灰水洗溶液之Solvay Process42 第五章 結論44 5.1 結論45 5.2 未來發展與建議46 參考文獻48

    [1]蕭裔芬.(2022).臺北市一般廢棄物減量之探討.台北市政府全球資訊網.https://www.gov.taipei/
    [2]環境部環境管理署. (2025). 營運年報.焚化場營運管理資訊系統. https://swims.moenv.gov.tw/StatisticsCards
    [3]孫世勤,關蓓德.(2001).都市垃圾焚化廠飛灰處理方式評估.工業污染防治第78期.
    [4]張君偉,林洋宇,黃琛徽,薛人豪.(2019). 碳酸氫鈉於廢棄物焚化爐除酸系統之應用. 工業污染防治第147期.
    [5]U. S. Geological Survey. (2020). Mineral commodity summaries 2020.
    [6]U. S. Geological Survey. (2021). Mineral commodity summaries 2021
    [7]U. S. Geological Survey. (2022). Mineral commodity summaries 2022.
    [8]U. S. Geological Survey. (2023). Mineral commodity summaries 2023.
    [9]U. S. Geological Survey. (2024). Mineral commodity summaries 2024.
    [10]Mohammad, A. F., El-Naas, M. H., Suleiman, M. I., & Al Musharfy, M. (2016). Optimization of a solvay-based approach for CO2 capture. Int. J. Chem. Eng. Appl, 7(4), 230.
    [11]Mao, Y., Yang, X., & Gerven, T. V. (2023). Amine-assisted simultaneous CO2 absorption and mineral carbonation: effect of different categories of amines. Environmental Science & Technology, 57(29), 10816-10827.
    [12]Hasan, M. F., First, E. L., Boukouvala, F., & Floudas, C. A. (2015). A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Computers & Chemical Engineering, 81, 2-21.
    [13]Peres, C. B., Resende, P. M., Nunes, L. J., & Morais, L. C. D. (2022). Advances in carbon capture and use (CCU) technologies: a comprehensive review and CO2 mitigation potential analysis. Clean technologies, 4(4), 1193-1207.
    [14]Rebecca Lindsey.(2025). Climate change: atmospheric carbon dioxide. NOAA website. https://www.noaa.gov/climate
    [15]Kabir, M., Habiba, U. E., Khan, W., Shah, A., Rahim, S., De los Rios- Escalante, P. R., ... & Shafiq, M. (2023). Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. Journal of King Saud University-Science, 35(5), 102693.
    [16]Zhu, F., Xiong, Y., Wang, Y., Wei, X., Zhu, X., & Yan, F. (2018). Heavy metal behavior in “Washing-Calcination-Changing with Bottom Ash” system for recycling of four types of fly ashes. Waste Management, 75, 215-225.
    [17]Pan, J. R., Huang, C., Kuo, J. J., & Lin, S. H. (2008). Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28(7), 1113-1118.
    [18] Viet, D. B., Chan, W. P., Phua, Z. H., Ebrahimi, A., Abbas, A., & Lisak, G. (2020). The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials. Journal of Hazardous Materials, 398, 122906.
    [19]Shao, Y., Shao, Y., Zhang, W., Zhu, Y., Dou, T., Chu, L., & Liu, Z. (2022). Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization. Waste management, 143, 54-60.
    [20]Zhang, Y., Ma, Z., Fang, Z., Qian, Y., Zhong, P., & Yan, J. (2020). Review of harmless treatment of municipal solid waste incineration fly ash. Waste Disposal & Sustainable Energy, 2(1), 1-25.
    [21]Chen, J., Zhu, W., Shen, Y., Fu, C., Li, M., Lin, X., ... & Yan, J. (2023). Resource utilization of ultrasonic carbonated MSWI fly ash as cement aggregates: Compressive strength, heavy metal immobilization, and environmental-economic analysis. Chemical Engineering Journal, 472, 144860.
    [22]Clavier, K. A., Paris, J. M., Ferraro, C. C., & Townsend, T. G. (2020). Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production–a review. Resources, Conservation and Recycling, 160, 104888.
    [23]Li, M., Chen, J., Lin, X., Mao, T., Zhu, Z., Lv, J., ... & Yan, J. (2022). Study on three-stage counter-current water washing desalination characteristics and mechanism of high chlorine waste incineration fly ash. Processes, 10(12), 2540.
    [24]Chen, Q., Zhao, Y., Qiu, Q., Long, L., Liu, X., Lin, S., & Jiang, X. (2023). Zeolite NaP1 synthesized from municipal solid waste incineration fly ash for photocatalytic degradation of methylene blue. Environmental Research, 218, 114873.
    [25]Chen, Z., Lin, X., Zhang, S., Xiangbo, Z., Li, X., Lu, S., & Yan, J. (2021). Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression. Journal of Hazardous Materials, 416, 126216.
    [26]Chen, J., Fu, C., Mao, T., Shen, Y., Li, M., Lin, X., ... & Yan, J. (2022). Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling. Chemical Engineering Journal, 450, 138418.
    [27]Cheng, T. W., & Chen, Y. S. (2004). Characterisation of glass ceramics made from incinerator fly ash. Ceramics International, 30(3), 343-349.
    [28]Yue, Y., Liu, Z., Liu, Z., Zhang, J., Lu, M., Zhou, J., & Qian, G. (2019). Rapid evaluation of leaching potential of heavy metals from municipal solid waste incineration fly ash. Journal of environmental management, 238, 144-152.
    [29]Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2022). Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends. Journal of Material Cycles and Waste Management, 24(5), 1693-1717.
    [30]Chen, X., Tan, Y., Yan, H., Shi, J., Ding, B., & Wu, J. (2023). Enhancing sustainable valorization: Harmless synergistic melting treatment for high-value vitreous products from MSWI fly ash and electrolytic manganese residue. Waste Management, 171, 43-53.
    [31]Liu, J., Hu, L., Tang, L., & Ren, J. (2021). Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. Journal of Hazardous Materials, 402, 123451
    [32]Fan, C., Wang, B., Ai, H., & Liu, Z. (2022). A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash. Journal of environmental management, 305, 114345.
    [33]Lam, C. H., Ip, A. W., Barford, J. P., & McKay, G. (2010). Use of incineration MSW ash: a review. Sustainability, 2(7), 1943-1968.
    [34]Zheng, L., Wang, C., Wang, W., Shi, Y., & Gao, X. (2011). Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Management, 31(2), 311-317.
    [35]Ma, X., He, T., Da, Y., Su, F., & Yang, R. (2024). The Toxicity Leaching and the Cement Admixtures Properties with Incineration Fly Ash of Different Furnace Types. Langmuir, 40(47), 24870-24881.
    [36]Haiying, Z., Youcai, Z., & Jingyu, Q. (2007). Study on use of MSWI fly ash in ceramic tile. Journal of Hazardous Materials, 141(1), 106-114.
    [37]Luo, H., Cheng, Y., He, D., & Yang, E. H. (2019). Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the total environment, 668, 90-103.
    [38]Li, X., Chen, Q., Zhou, Y., Tyrer, M., & Yu, Y. (2014). Stabilization of heavy metals in MSWI fly ash using silica fume. Waste Management, 34(12), 2494-2504.
    [39]Aïtcin, P. C. (2016). Portland cement. In Science and technology of concrete admixtures (pp. 27-51). Woodhead Publishing.
    [40]Cinquepalmi, M. A., Mangialardi, T., Panei, L., Paolini, A. E., & Piga, L. (2008). Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics. Journal of Hazardous materials, 151(2-3), 585-593.
    [41]Król, M. (2020). Natural vs. Synthetic zeolites. Crystals, 10(7), 622.
    [42]Khaleque, A., Alam, M. M., Hoque, M., Mondal, S., Haider, J. B., Xu, B., ... & Moni, M. A. (2020). Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2, 100019.
    [43]Zhou, Q., Jiang, X., Qiu, Q., Zhao, Y., & Long, L. (2023). Synthesis of high-quality NaP1 zeolite from municipal solid waste incineration fly ash by microwave-assisted hydrothermal method and its adsorption capacity. Science of the total environment, 855, 158741.
    [44]Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R. G., & Catlow, C. R. A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 44(20), 7044-7111.
    [45]Visa, M. (2016). Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technology, 294, 338-347.
    [46]Yuan, Q., Robert, D., Mohajerani, A., Tran, P., & Pramanik, B. K. (2022). Utilisation of waste-to-energy fly ash in ceramic tiles. Construction and Building Materials, 347, 128475.
    [47]Li, C., Zhang, P., Zeng, L., Yu, L., & Li, D. (2023). Study on preparation of glass-ceramics from municipal solid waste incineration (MSWI) fly ash and chromium slag. Journal of Building Engineering, 68, 106080.
    [48]Baláž, P. (2003). Mechanical activation in hydrometallurgy. International journal of mineral processing, 72(1-4), 341-354.
    [49]Baláž, P., Aláčová, A., Achimovičová, M., Ficeriová, J., & Godočíková, E. (2005). Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy, 77(1-2), 9-17.
    [50]Weibel, G., Zappatini, A., Wolffers, M., & Ringmann, S. (2021). Optimization of metal recovery from MSWI fly ash by acid leaching: Findings from laboratory-and industrial-scale experiments. Processes, 9(2), 352.
    [51]Tripathi, R. C., Masto, R. E., & Ram, L. C. (2009). Bulk use of pond ash for cultivation of wheat–maize–eggplant crops in sequence on a fallow land. Resources, conservation and recycling, 54(2), 134-139.
    [52]Wang, T., Liu, T., & Sun, C. (2008). Application of MSWI fly ash on acid soil and its effect on the environment. Waste management, 28(10), 1977-1982.
    [53]Mahurpawar, M. (2015). Effects of heavy metals on human health. Int J Res Granthaalayah, 530(516), 1-7.
    [54]Wieser, M. E., Holden, N., Coplen, T. B., Böhlke, J. K., Berglund, M., Brand, W. A., ... & Zhu, X. K. (2013). Atomic weights of the elements 2011 (IUPAC Technical Report). Pure and Applied Chemistry, 85(5), 1047-1078.
    [55]Perkin, F. M. (1908). The discovery of the alkali metals by Humphry Davy: the bearing of the discovery upon industry. Transactions of the Faraday Society, 3(March), 205-219.
    [56]Luo, W., Shen, F., Bommier, C., Zhu, H., Ji, X., & Hu, L. (2016). Na-ion battery anodes: materials and electrochemistry. Accounts of chemical research, 49(2), 231-240.
    [57]Wang, L., Wang, T., Peng, L., Wang, Y., Zhang, M., Zhou, J., ... & Duan, X. (2022). The promises, challenges and pathways to room-temperature sodium-sulfur batteries. National Science Review, 9(3), nwab050.
    [58]Bonfim-Rocha, L., Silva, A. B., de Faria, S. H. B., Vieira, M. F., & de Souza, M. (2020). Production of sodium bicarbonate from CO2 reuse processes: A brief review. International Journal of Chemical Reactor Engineering, 18(1), 20180318.
    [59]ATAMAN, G., TUNCER, S., & GÜNGÖR, N. (2023). Remarks on different methods for analyzing trona and soda samples. Bulletin of the Mineral Research and Exploration, 1985(105), 6.
    [60]Thieme, C. (2000). Sodium carbonates. Ullmann's Encyclopedia of Industrial Chemistry.
    [61]Langenfeld, N. J., Kusuma, P., Wallentine, T., Criddle, C. S., Seefeldt, L. C., & Bugbee, B. (2021). Optimizing nitrogen fixation and recycling for food production in regenerative life support systems. Frontiers in Astronomy and Space Sciences, 8, 699688.
    [62]El-Naas, M. H., Mohammad, A. F., Suleiman, M. I., Al Musharfy, M., & Al-Marzouqi, A. H. (2017). A new process for the capture of CO2 and reduction of water salinity. Desalination, 411, 69-75.
    [63]Zheng, L., Wang, C., Wang, W., Shi, Y., & Gao, X. (2011). Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Management, 31(2), 311-317.
    [64]Chen, W., Wang, Y., Sun, Y., Fang, G., & Li, Y. (2022). Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate solution. Chemosphere, 307, 135860
    [65]Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., & Dickson, A. G. (2007). Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106(1-2), 287-300.

    QR CODE