| 研究生: |
黃奕璁 Huang, I-Tsung |
|---|---|
| 論文名稱: |
以懸空技術實現無基板可轉移式薄膜之表面電漿元件 Substrateless transferable surface plasmon devices realized by suspended nano-thin film |
| 指導教授: |
張博宇
Chang, Po-Yu |
| 共同指導教授: |
周昱薰
Chou, Yu-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 懸空薄膜 、氧化鋅奈米線 、表面電漿子 、奈米雷射 |
| 外文關鍵詞: | surface plasmon, nanolaser, zinc oxide nanowire, suspended nano-thin film |
| 相關次數: | 點閱:151 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體雷射的尺寸微小化是近年來光電元件發展的方向,小尺寸元件所擁有的是高速、低損耗、高密度集成的特性。儘管現今的半導體雷射已經能夠精確的製作到次微米波長的大小,但傳統的半導體雷射卻依然會受限於光學繞射極限,為了達到雷射所需要的回饋機制,需要有長度至少半個光波波長的共振腔,這使得傳統半導體始終無法縮小到數個奈米的尺寸。不過近年來已經有團隊使用了表面電漿子的概念來突破繞射極限並製作出奈米雷射,表面電漿子擁有數十奈米的波長,可以取代傳統光波作為傳遞能量的方式,表面電漿奈米雷射的結構為半導體、金屬與絕緣體,三者形成Semiconductor-Insulator-Metal(SIM)結構,以電漿子的共振腔取代以往的光學共振腔可以有效的縮減雷射元件的體積。
表面電漿奈米雷射的實現需要克服高損耗造成閾值上升的問題,金屬薄膜的品質與平整度對於雷射損耗影響甚鉅,基板無法有效散熱也是造成閾值上升的原因。為了解決上述問題,本論文使用氧化鋅奈米線作為增益介質,並且專注於製作奈米懸空薄膜,相較於以往有基板的元件,懸空薄膜除了可以有效改善散熱的問題,對於將來轉移薄膜至其他目標元件更是有巨大的潛力及未來性。在生物醫學上,若能將元件縮小並轉移至微小細胞,期望能更入微的觀測並對其造成影響,在生物領域上也有相當大的發展性。
In this study, we take the surface plasmon nanolaser as the main research target, we used zinc oxide nanowire as the gain medium and spread the nanowires on a 150nm suspended metal film with 5nm alumina as the insulator layer to realize the semiconductor-insulator-metal (SIM) structure. To effectively reduce heat accumulation, we remove the substrate to get a suspended nano-thin film. When the devices are in contact with air, it can reduce the heat by the flowing air, thereby lowering the laser threshold. Through experiments, we have confirmed that suspending the film can effectively reduce the laser threshold (the minimum threshold can be reduced to 10μW) and increase the operating temperature to 90°C.
[1] Ma, Ren Min, Oulton, Rupert F,” Applications of nanolasers,” Nature Nanotechnology, vol.14, pp.12-22, 2019.
[2] Wang, Danqing, Wang, Weijia, Knudson, Michael P., Schatz, George C, Odom, Teri W,” Structural Engineering in Plasmon Nanolasers,” Chemical Reviews, vol.118, pp.2865-2881, 2018.
[3] Deveaud-Pledran, B.,” Polaritronics in view,” Nature, 453(7193), pp.297-298, 2008.
[4] Hill, M. T. and Gather, M. C.” Advances in small lasers,” Nat. Photonics, vol.8, pp.908-918, 2014.
[5] Ozgur, Ümit, Hofstetter, Daniel Morkoç, Hadis,” ZnO devices and applications: A review of current status and future prospects,” Proceedings of the IEEE, vol.98, pp.1255-1268, 2010.
[6] M. Planck, Verhandl.” On the Theory of the Energy Distribution Law of the Normal. Spectrum,” Dtsch. phys. Ges., 2, 237, 1900.
[7] Yang, Ankun, Wang, Danqing, Wang, Weijia Odom, Teri W,” Coherent Light Sources at the Nanoscale,” Annual Review of Physical Chemistry, vol.68, pp.83-99, 2017.
[8] Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X,” Plasmon Lasers at Deep Subwavelength Scale,” Nature, 461, 629–632, 2009.
[9] Ma, R. M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X. A,” Room-Temperature Sub-Diffraction-Limited Plasmon Laser by Total Internal Reflection,” Nat. Mater, 10,110–113, 2011.
[10] Ding, K.; Ning, C. Z,” Metallic Subwavelength-Cavity Semiconductor Nanolasers,” Light-Sci, 1, e20.2, 2012.
[11] Paul Adrien Maurice Dirac,” The quantum theory of the emission and absorption of radiation,” Royal Society vol. 114, 1927
[12] William L. Barnes, Alain Dereux and Thomas W. Ebbesen.” Surface plasmon subwavelength optic,” Nature, vol.424, pp. 824-830, 2003.
[13] David J. Bergman and Mark I. Stockman.” Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Physical Review Letters, vol. 90, no.4, 027402. 2003.
[14] T. H. Maiman.” Stimulated Optical Radiation in Ruby,” Nature, vol.187, pp.493-494, 1960.
[15] Lu, Yu-Jung,“氮化物半導體電漿子奈米雷射之研究,” 清華大學物理學系學位論文, 2013.
[16] Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. Y.; Li, H.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C.” Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano, vol.9, pp.3978−3982. 2015.
[17] Chou, Yu Hsun.; Wu, Yen Mo.; Hong, Kuo Bin.; Chou, Bo Tsun.; Shih, Jheng Hong.; Chung, Yi Cheng.; Chen, Peng Yu.; Lin, Tzy Rong.; Lin, Chien Chung.; Lin, Sheng Di.; Lu, Tien Chang.” High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum,” Nano Letters, vol.16, pp.3179-3186, 2016.
[18] J. Pankove,” Temperature Dependence of Emission Efficiency and Lasing Threshold in Laser Diodes,” IEEE Journal of Quantum Electronics, vol. QE-4, no. 4, 1968.
[19] Gould, R. Gordon.” The LASER, Light Amplification by Stimulated Emission of Radiation”. In Franken, P.A.; Sands R.H. (eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, pp.128, 1959.
[20] Svelto, Orazio.” Principles of Lasers,” 4th ed. (trans. David Hanna), Springer Science+Business Media, LLC, 0-306-45748-2, 1998
[21] Maurice G. A. Bernard.; Georges Duraffourg.” Laser Conditions in Semiconductors,” Basic solid state physics, vol.1, Issue7, pp.699-703, 1961.
[22] Fabry, C; Perot, A,” Theorie et applications d'une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 1899
[23] Rayleigh, L.,” CXII. The problem of the whispering gallery,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.20, pp.1001-1004, 1910.
[24] Gizatulin, Azat, Sultanov, Albert Kh.” Application of whispering gallery modes in opticalv,” Proc. SPIE 10774, Optical Technologies in Telecommunications, 2017.
[25] Martin T. Hill, and Malte C. Gather,” Advances in small lasers,” Nature Photonics, vol 8, 2014.
[26] Cun-Zheng Ning,” Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Advanced Photonics, 1(1), 014002, 2019.
[27] 盧廷昌,王興宗,” 半導體雷射導論,” 五南出版社, 2008.
[28] 楊國輝,黃宏彥,” 雷射原理與量測概論, ” 五南出版社, 2008.
[29] Barnes, William L, Dereux, Alain, Ebbesen, Thomas W,” Surface plasmon subwavelength optics,” Nature, vol.424, pp.824-830, 2003.
[30] Enxu Yao, Jigang Hu, Wei Liu, Weiqiang Xie, Fei Wang, Yonghua Lu, Qiwen Zhan,” Enhanced interaction of Tamm plasmon polaritons based on graphene/DBR/silver structure,” SPIE, vol.11440, 2020.
[31] 邱國斌, 蔡定平,” 金屬表面電漿簡介,” 物理雙月刊, vol.28, pp.472, 2006.
[32] Ambati, M.; Nam, S. H.; Ulin-Avila, E.; Genov, D. A.; Bartal, G.; Zhang, X,” Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8 (11), 3998−4001. 2008.
[33] Noginov, M. A.; Zhu, G.; Mayy, M.; Ritzo, B. A.; Noginova, N.; Podolskiy, V. A,” Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101 (22), 226806.7, 2008
[34] Yu-Jung Lu, Jisun Kim, Hung-Ying Chen, Chihhui Wu, Nima Dabidian, Charlotte E. Sanders, Chun-Yuan Wang, Ming-Yen Lu, Bo-Hong Li, Xianggang Qiu4, Wen-Hao Chang, Lih-Juann Chen, Gennady Shvets, Chih-Kang Shih, Shangjr Gwo,” Plasmonic Nanolaser Using Epitaxially Grown Silver Film,” Science 337, 450, 2012.
[35] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D,” Room-Temperature Ultra- violet Nanowire Nanolasers,” Science, 292, 1897– 1899, 2001.
[36] Noda, S,” Seeking the Ultimate Nanolaser,” Science, 314, 260–261, 2006.
[37] Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. Y.; Li, H.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C.” Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano, vol.9, pp.3980, figure.2(a). 2015.
[38] Robert W. Keyes,” The Impact of Moore's Law,” IEEE Solid-State Circuits Society Newsletter, vol.11, pp.25-27, 2006.
[39] R.R. Schaller,” Moore's law: past, present and future,” IEEE Spectrum, vol.34, pp.52-59, 1997.
[40] M. Mitchell Waldrop,” The chips are down for Moore’s law,” Nature, vol.530, 2016.
[41] Kumar, Rajesh, Kumar, Girish Al-Dossary, O.Umar, Ahmad,” ZnO nanostructured thin films: Depositions, properties and applications—A review,” Materials Express, vol.5, pp.3-23, 2015.
[42] Zhuang, Jia-Yuan,” Exciton-polariton dispersion relation in ZnO microrod: Simulation and experiment,” 成功大學光電所碩士論文, pp.11, 2020.
[43] Francisco Mireles and Sergio E. Ulloa,” Acceptor binding energies in GaN and AlN,” Phys. Rev. B 58, 3879 – Published 15 August, 1998.
[44] Qing Gu and Yeshaiahu Fainman,” Semiconductor Nanolasers,” Cambridge University Press, pp.283-289, 2017.
[45] Zhuang, Jia-Yuan,” Exciton-polariton dispersion relation in ZnO microrod: Simulation and experiment,” 成功大學光電所碩士論文, pp.34-35, 2020.
[46] 楊雲凱,” 物理氣相沉積(PVD)介紹,” nano communication, vol.22, no.4, pp.33-35, 2015.
[47] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, Jr-Yau Fang,” Photoluminescence: Principles, Structure, and Applications,” 科儀新知, vol.10, no.5, pp.39-51, 2006.