簡易檢索 / 詳目顯示

研究生: 陳仕哲
Chen, Shih-Tse
論文名稱: 表面增強拉曼光譜及其應用於初期微波電漿化學氣相沉積奈米鑽石之分析
Surface Enhanced Raman Spectroscopy and Its Application to the Characterization of the Early-stage Microwave Plasma Chemical Vapor Deposition of Nanocrystalline Diamond
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 表面增強拉曼效應陽極氧化鋁奈米銀粒子奈米鑽石
外文關鍵詞: SERS, AAO, nanoparticle, NCD
相關次數: 點閱:87下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用電化學方法且利用多孔性陽極氧化鋁(Anodic Aluminum Oxide;AAO)本身的奈米結構,將奈米金屬顆粒鍍進孔洞內,以形成有序的金屬顆粒陣列,而在雷射光的照射下,這些金屬顆粒能夠產生表面電漿共振(Surface Plasmon Resonance;SPR)以增強照射區域下的電場,由於有這樣的特性,在許多的領域上有不同的應用,而本篇主要探討表面電漿共振(SPR)對拉曼訊號的增強效應。
    傳統對於表面增強拉曼訊號(Surface Enhance Raman Scattering;SERS )的研究都採用熱蒸鍍法,這類方法對於奈米金屬顆粒的分布與大小不易控制,因此我們使用多孔性陽極氧化鋁來改善這種狀況。且因為將奈米金屬粒子包覆在陽極氧化鋁阻障層中,使得我們的樣本在保存兩個月後後仍可以保有表面增強拉曼的效應,實驗過程中,稀釋不同濃度的奈米鑽石懸浮液經超音波震盪器均勻散布在含金屬顆粒與不含金屬顆粒的陽極氧化鋁,以532nm波長雷射的拉曼系統進行觀察,可以發現在含金屬顆粒的陽極氧化鋁上,奈米鑽石的峰值與濃度成正向關係,之後以微波電漿製程依不同的時間成長一層極薄的鑽石薄膜,以532nm波長的雷射拉曼系統進行觀察,我們得以分析鑽石在初期成膜的情形。

    This paper reports the application of surface-enhanced Raman spectroscopy (SERS) to the investigations of ultrananocrystalline diamond (UNCD) growth anodic aluminum oxide (AAO) films encapsulated with two-dimensional (2-D) silver (Ag) nanoparticle arrays are fabricated and used as the SERS substrate and the diamond CVD substrate. For a grown ultra thin and fragmented UNCD film, normal Raman spectroscopy cannot offer useful information in the detections of UNCD formation under the visible excitation range. Ag/AAO film is employed to induced SERS for characterize the possible formation of such an ultra thin and fragmented UNCD film. . Strong localized electromagnetic (EM) field was induced from Ag nanoparticles through 325- and 532-nm laser excitations to enhance Raman scattering signals of an ultra thin UNCD film and of early stage grown UNCD before a continuous film is formed. UNCD is grown on an AAO film encapsulated with Ag nanoparticle arrays by microwave plasma in the mixtures of methane and argon. Detonation nanodiamond (DND) particles in a dimethyl sulfoxide (DMSO) solution are adopted as diamond seeding for growing UNCD. The temperature of the Ag/AAO substrate is kept at 400 ℃ that is measured via a thermocouple probe placed in touch with the substrate holder. The UNCD films is grown in 1% methane diluted by argon at the applied microwave power of 400 W and at gas pressure of 100 Torr for 15~45 minutes. In this context, the fabrication process of Ag/AAO film into SERS substrates and the early stage growth of UNCD on Ag/AAO films detected by SERS are reported.

    摘要 III Abstract IV 誌謝 V 目錄 VI 圖目錄 IX 第一章 緒論 1 1.1感測元件 1 1.2金屬介電複合材料 1 1.3研究動機與目的 2 第二章 背景理論與文獻回顧 4 2.1拉曼量測原理[5] 4 2.2表面增強拉曼效應[5] 6 2.3表面電漿子 7 2.3.1簡介 7 2.3.2奈米金屬球的表面電漿共振[6] 8 2.4金屬奈米顆粒 12 2.4.1簡介 12 2.4.2金屬奈米粒子的製備 12 2.5電化學抛光 20 2.6陽極氧化鋁 22 2.7 含銀奈米粒子之陽極氧化鋁拉曼增強效應[22] 25 2.8鑽石 27 2.8.1沉積鑽石前的前處理 27 2.8.2鑽石的成長機制 29 2.8.3鑽石的種類 30 2.9鑽石拉曼 31 2.9.1甲烷 33 2.9.2氫氣 33 2.9.3惰性氣體 34 2.10鑽石的表面增強拉曼效應 35 2.10.1極薄鑽石的表面增強拉曼效應[40] 36 2.10.2不同金屬微奈米粒子對鑽石表面增強效應的影響 38 第三章 實驗 40 3.1電化學拋光 41 3.2陽極氧化 42 第四章 結果與討論 49 4.1陽極氧化鋁 49 4.2電鍍銀 53 4.3.沉積鑽石 54 第五章、結論與未來展望 59 一、結論 59 二、未來展望 59 參考文獻 61

    [1] Chen-Han Huang, H.-Y. L.,Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng, "Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays," Optics Express, vol. 18, pp. 27891-27899, 2010.
    [2] Jiaqi Zhu, J. H. Aiping Liu, Songhe Meng, Chunzhu Jiang, "Mechanical properties and Raman characterization of amorphous diamond films as a function of film thickness," Surface & Coatings Technology, vol. 201, pp. 6667-6669, 2007.
    [3] YunWei Charles Cao, R. J., Chad A. Mirkin, "Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection," Science, vol. 297, pp. 1536-1540, 2002.
    [4] T. López-Rı os, É. S., S. Leclercq, and É. Sauvain, "Polyacetylene in Diamond Films Evidenced by Surface Enhanced Raman Scattering," The American Physical Society, vol. 76, pp. 4935-4938, 1996.
    [5] 邱國智, "利用表面強化拉曼散射於單一DNA生物分子層結構之分析," 國立成功大學光電工程研究所碩士論文, 2006.
    [6] Martin,J. O. P. K. A. O. J. F. "Plasmon resonant coupling in metallic nanowires," OPTICS EXPRESS, vol. 8, pp. 655-663, 2001.
    [7] Fumitaka Mafune, J.-Y. K., Yoshihiro Takeda, and Tamotsu Kondow, "Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution," J. Phys. Chem., vol. 104, pp. 9111–9117, 2000.
    [8] K. Fumitaka Mafune ,J.-Y., Yoshihiro Takeda, and Tamotsu Kondow, "Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant," J. Phys. Chem., vol. 105, pp. 5114-5120, 2001.
    [9] 郭清癸、牟中原、黃俊傑, "金屬奈米粒子的製造," 物理雙月刊, vol. 6, pp. 614-624, 2001.
    [10] Victor F. Puntes,K. M. K., A. Paul Alivisatos, "Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt," Science, vol. 297, pp. 2115-2117, 2001.
    [11] Lin Guo,Q. H., Xiao-yuan Li and Shihe Yang "Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis " Physical Chemistry Chemical Physics vol. 3, pp. 1661-1665, 2001.
    [12] Sang-Jae Park,S. K., Suyoun Lee,Zheong G. Khim,Kookrin Char, "ChemInform Abstract: Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres.," ChemInform, vol. 31, 2000.
    [13] Manfred T. Reetz, M. W., Rolf Breinbauer,Thomas Thurn-Albrecht, and Walter Vogel, "Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-, Ni- and Pt/Pd Colloids," Chem. Eur. J., vol. 7, pp. 1084-1094, 2001.
    [14] M. P. Pileni, "Nanosized Particles Made in Colloidal Assemblies," Langmuir, vol. 13, pp. 3266-3276, 1997.
    [15] Richard M. ,M. Z., Crooks, Li Sun, Victor Chechik, and Lee K. Yeung, "Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis," Acc. Chem. Res, vol. 34, pp. 181-190, 2001.
    [16] 蔡宜壽, "電解拋光製程參數對316L不銹鋼 反射率及粗糙度之影響 " 私立逢甲大學紡織工程研究所, 2007.
    [17] Paula M., S. J. Mendes, Kevin Critchley, Jose Plaza, Yu Chen, Kirill Nikitin, Richard E. Palmer, Jon A. Preece, Stephen D. Evans, and Donald Fitzmaurice|, "Gold Nanoparticle Patterning of Silicon Wafers Using Chemical e-Beam Lithography," Langmuir, vol. 20, pp. 3766-3768, 2004.
    [18] Jiali Li, D. S. Ciaran McMullan, Daniel Branton, Michael J. Aziz & Jene A. Golovchenko, "Ion-beam sculpting at nanometre length scales," Nature, vol. 412, pp. 166-169, 2001.
    [19] Brian G Burke, T. J. H. J., Andrew B Spisak and Keith A Williams, "Deep UV pattern definition in PMMA " Nanotechnology, vol. 9, p. 215301, 2008.
    [20] Feiyue Li, L. Z. and Robert M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater., vol. 10, pp. 2470-2480, 1998.
    [21] A. P. Li, F. M. l., A. Birner, K. Nielsch, and U. Go sele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," JOURNAL OF APPLIED PHYSICS vol. 84, pp. 6023-6026, 1998.
    [22] Chen-Han Huang, H.-Y. L. Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui,and Yonhua Tzeng, "Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors," Optics Express, vol. 19, pp. 11441-11450, 2011.
    [23] S. R. Emory, S. N. A., "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science vol. 275, pp. 1102-1106, 1997.
    [24] K. Kneipp, H. K., I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev, vol. 99, pp. 2957-2976, 1999.
    [25] B. Dragnea, C. C., E.-S. Kwak, B. Stein, and C. C. Kao, "Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses," J. Am. Chem. Soc. , vol. 125, pp. 6374-6375, 2003.
    [26] A. Tao, F. K. C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, "Langmuir Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy," Nano Lett., vol. 3, pp. 1229–1233, 2003.
    [27] J. M. McLellan, Z.-Y. L. A. R. Siekkinen, and Y. Xia, "The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization," Nano Lett., vol. 7, pp. 1013-1017, 2007.
    [28] Guotao Duan, W. C., Yuanyuan Luo, Zhigang Li, and Yue Li "Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect " Appl. Phys. Lett., vol. 89, p. 211905 2006.
    [29] Yasar Gurbuz, O. E. Ibrahim Tekin, Weng P. Kang, Jimmy L. Davidson "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 201, pp. 1055-1070, 2005.
    [30] G. D. Zhou, D. M., L. C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH4/H-2 microwave plasmas," Annual Review of Materials Science, vol. 84, pp. 1981-1989, 1998.
    [31] Y. T. Lin, G. Y., A. T. S. Wee, Z. X. Shen1, and Kian Ping Loh "Compositional mapping of the argon–methane–hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system " Applied Physics Letters, vol. 77, pp. 2692-2694, 2000.
    [32] Orlando Auciello, S. P., Anirudha V. Sumant, Chris Gudeman, Suresh Sampath, "Are diamonds a MEMS' best friend?," IEEE, vol. 8, pp. 61-75, 2007.
    [33] A. V. Sumant, A. R. K., D. M. Gruen,O. Auciello, A. Erdemir, M. Williams, A. F. Artiles And W. Adams, "Ultrananocrystalline Diamond Film as a Wear-Resistant and Protective Coating for Mechanical Seal Applications," Tribology Transactions, vol. 48, pp. 24-41, 2005.
    [34] Anirudha V. Sumant, O. A., RobertW. Carpick, Sudarsan Srinivasan, and James E. Butler, "Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications " Mrs Bulletin, vol. 35, pp. 281-288, 2010.
    [35] O.A. Williams, M. D. J., D'Haen , K. Haenen , J. Maes , V.V. Moshchalkov ,M. Nesládek, D.M. Gruen "Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond " Diamond & Related Materials, vol. 15, pp. 654-658, 2006.
    [36] A. C. F., J. Robertson, "Raman spectroscopy of amorphous,nanostructured, diamond-like carbon, and nanodiamond," The Royal Society, vol. 362, pp. 2477-2512, 2004.
    [37] Duosheng Lia, C. A. C. I., Dunwen Zuoa, Wenzhuang Lua, Rongfa Chena, Bingkun Xianga and Min Wanga, "Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD " Solid State Ionics, vol. 179, pp. 1263-1267, 2008.
    [38] A. Hoffman, S. M., "Hydrogen in nano-diamond films," Diamond and Related Materials, vol. 14, pp. 450-475, 2005.
    [39] X. Xiao, J. B. and J. E. Gerbi, "Low temperature growth of ultrananocrystalline diamond," JOURNAL OF APPLIED PHYSICS, vol. 96, pp. 2232-2239, 2004.
    [40] Diane S, K., Ronald Weimer, Lawrence Pilione, and William B. White "SurfaceMenhanced Raman spectroscopy of chemical vapor deposited diamond fUms," Appl. Phys. Lett, vol. 56 pp. 1320-1322, 1990.
    [41] B.R. Huang, K. H. C. W.Z. Ke "Surface-enhanced Raman analysis of diamond films using different metals," Materials Letters vol. 42, pp. 162-165, 2000.
    [42] Hideki Masuda, K. Y., A Osaka, "Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution," Journal of Applied Physics, vol. 37, pp. 1340-1342, 1998.
    [43] Ben-Chao Lau, C.-Y. L., Hsing-Ying Lin, Chen-Han Huang,Hsiang-Chen Chui,and Yonhua Tzenga, "Electrochemical Fabrication of Anodic Aluminum Oxide Films with Encapsulated Silver Nanoparticles as Plasmonic Photoconductors," Electrochemical and Solid-State Letters, vol. 14, pp. E15-E17, 2011.

    下載圖示 校內:2016-07-27公開
    校外:2021-12-31公開
    QR CODE