簡易檢索 / 詳目顯示

研究生: 郭佰寯
Kuo, Bai-Jiun
論文名稱: CBM 複合蛋白質在NFκB的活化路徑中的結構研究
Structural Studies of the CBM complex in NFκB activation
指導教授: 羅玉枝
Lo, Yu-Chih
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 207
中文關鍵詞: MALT1BCL10CARMA proteinCBM complexNF-κB
外文關鍵詞: MALT1, BCL10, CARMA protein, CBM complex, NF-κB
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • NF-κB 是一個重要的轉錄因子並參與了許多細胞反應像是細胞活化、細胞生存、增生、發炎以及免疫反應。在對應的受體接收到刺激活化後,訊息會傳遞到一個包含了CARMA 家族的蛋白、BCL10 以及MALT1 的CBM 複合體來促使下游的NF-κB 活化。當它失調的時候會導致NF-κB持續性活化或是抑制進而導致免疫缺陷疾病的產生。然而,CBM 複合體形成的詳細機制仍未被解析。在我們的研究中,我們解出了MALT1 death domain 的晶體結構,解析度高達2.1 Å。其中,解析出了兩段之前未解析的區域。這兩段區域參與了MALT1 的C 端螺旋的結構穩定。與之前解析出的結構比較,在C 端螺旋處我們認為和NLRP14 的PYD 形成stemhelix的dimer 相似,這兩個蛋白在水溶液中同時存在monomer 與dimer。並在C 端螺旋處可以找到兩者相似的氨基酸去調控構形。比對之前的BCL10-MALT1 結構中,我們發現MALT1 是藉由一個N+7 的規則去產生交互作用。這樣的dimerization 能獲得重要的蛋白水解的活性來參與NF-κB 的訊息傳遞。此外,我們證明了 immunoglobin domain 2 也對於MALT1形成oligomer 是另外一條重要的途徑。另一方面,我們發現BCL10 和MALT1 有兩個不同的接觸區域。綜合來說,這些結果幫助我們闡述了CBM 複合體的組成以及他們如何調控下游的訊息傳遞路線。

    Nuclear factor κB (NF-κB) is a crucial transcription factor to regulate lots of signaling pathway in our human body. It participates in lots of cellular responses such as cell activation, cell survival, proliferation, inflammation, and immune response. After activation of the corresponding receptors, signaling cascade transduction into a ternary complex which composed by CARMA family proteins, BCL10 and MALT1 and eventually activate the NF-κB. This complex is called CBM complex which dysregulation could lead to NF-κB constitutive activation or inhibition and cause lots of immunodeficiency diseases. However, the detail mechanism of CBM complex formation still unclear. In our research, we solved the crystal structure of the MALT1 death domain at a resolution of 2.1 Å. We identify two flexible loop that did not solved in previous structure. These loops participate the stabilization of MALT1 helix in the C-terminus. Compared to the previous structures, the C-terminus helix of MALT1 has a conformational difference. We propose that MALT1 is similar to the NLRP14 PYD to form a stem-helix mediated dimer. Both NLRP14 PYD and MALT1 forms monomer and dimer in the solution. There is a conformational regulation element in the NLRP14 PYD which can correspond to H115, E50 and M113 in MALT1 DD. Otherwise, fit MALT1 IG domain in the BCL10-MALT1 cryo-EM structure shows that MALT1 has large distance and angle to the other MALT1. Interestingly, we found a N to N+7 rule that MALT1 may interact with each other to form a dimer. MALT1 dimerization is important for its proteolytic activity to participate in the NF-κB signaling pathway. In addition, we proof that the immunoglobin domain 2 of MALT1 is crucial to interact with immunoglobin domain 1 to form the oligomer. Otherwise, we found two different interactions between BCL10 and MALT1. Taken together, these results help us to elucidate how the CBM complex assembles and regulates the downstream signaling pathway.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements VI Table of Contents VII Contents of Tables X Contents of Figures XI Abbreviation List XV 1. Research Background 1 1-1 The NF-κB signaling pathway 1 1-2 The CBM protein complex 3 1-3 The caspase-recruitment domain membrane-associated guanylate kinase protein(CARMA) family proteins 6 1-4 The B cell lymphoma 10 protein (BCL10) 10 1-5 The mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) 11 1-6 The current protein structure of the CBM complex 14 1-7 The aim of this study 18 2. Materials and Methods 20 2-1 Cloning, proteins expression and purification 20 2-2 Crystallization and structure determination 22 2-3 Multi-angle light scattering (MALS) and data analysis 23 2-4 Isothermal titration calorimetry (ITC) and data analysis 24 2-5 His-tag pulldown assay 24 3. Results 25 3-1 Crystal structure of MALT1 Death domain 25 3-2 MALT1 C71 in loop 2 mediated dimer to its asymmetry MALT1 C71 28 3-3 MALT1 DD use stem helix to mediated dimer formation 29 3-4 Conformational regulation element regulates the stem helix in MALT1 DD 31 3-5 MALT1 IG domain oligomerization is concentration dependent 33 3-6 MALT1 forms oligomer in BCL10-MALT1 filament through a N to N+7 rule 39 3-7 BCL10 CARD easily forms high-order filament in the solution 40 3-8 BCL10-MALT1 complex has two different interactions 43 3-9 Disrupting the BCL10 filament may enhance the binding affinity with MALT1 49 3-10 Crystal structure solved by MALT1 DD-IG1-IG2 50 3-11 Crystal structure solved by BCL10-MALT1 complex 51 3-12 CARMA1 forms oligomer through CC domain 52 3-13 CARMA1-BCL10 complex easily precipitate 54 3-14 BCL10-MALT1 complex is hard to interact with CARMA in solution 57 4. Discussion 59 References 68 Tables 82 Figures 89

    Aravind, L., Dixit, V.M., and Koonin, E.V. The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24, 47-53, 1999.

    Baens, M., Bonsignore, L., Somers, R., Vanderheydt, C., Weeks, S.D., Gunnarsson, J., Nilsson, E., Roth, R.G., Thome, M., and Marynen, P. MALT1 auto-proteolysis is essential for NF-kappaB-dependent gene transcription in activated lymphocytes. PLoS One 9, e103774, 2014.

    Baeuerle, P.A., and Baltimore, D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 540-546, 1988.

    Bardet, M., Seeholzer, T., Unterreiner, A., Woods, S., Krappmann, D., and Bornancin, F. MALT1 activation by TRAF6 needs neither BCL10 nor CARD11. Biochem Biophys Res Commun 506, 48-52, 2018.

    Basseres, D.S., and Baldwin, A.S. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817-6830, 2006.

    Bertin, J., Guo, Y., Wang, L., Srinivasula, S.M., Jacobson, M.D., Poyet, J.L., Merriam, S., Du, M.Q., Dyer, M.J., Robison, K.E., DiStefano, P.S., and Alnemri, E.S. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B. J Biol Chem 275, 41082-41086, 2000.

    Bertin, J., Wang, L., Guo, Y., Jacobson, M.D., Poyet, J.L., Srinivasula, S.M., Merriam, S., DiStefano, P.S., and Alnemri, E.S. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-kappa B. J Biol Chem 276, 11877-11882, 2001.

    Che, T., You, Y., Wang, D., Tanner, M.J., Dixit, V.M., and Lin, X. MALT1/paracaspase is a signaling component downstream of CARMA1 and mediates T cell receptor-induced NF-kappaB activation. J Biol Chem 279, 15870-15876, 2004.

    Chen, F.E., and Ghosh, G. Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views. Oncogene 18, 6845-6852, 1999.

    Coornaert, B., Baens, M., Heyninck, K., Bekaert, T., Haegman, M., Staal, J., Sun, L., Chen, Z.J., Marynen, P., and Beyaert, R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9, 263-271, 2008.

    David, L., Li, Y., Ma, J., Garner, E., Zhang, X., and Wu, H. Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc Natl Acad Sci U S A 115, 1499-1504, 2018.

    Davis, R.E., Ngo, V.N., Lenz, G., Tolar, P., Young, R.M., Romesser, P.B., Kohlhammer, H., Lamy, L., Zhao, H., Yang, Y., Xu, W., Shaffer, A.L., Wright, G., Xiao, W., Powell, J., Jiang, J.K., Thomas, C.J., Rosenwald, A., Ott, G., Muller-Hermelink, H.K., Gascoyne, R.D., Connors, J.M., Johnson, N.A., Rimsza, L.M., Campo, E., Jaffe, E.S., Wilson, W.H., Delabie, J., Smeland, E.B., Fisher, R.I., Braziel, R.M., Tubbs, R.R., Cook, J.R., Weisenburger, D.D., Chan, W.C., Pierce, S.K., and Staudt, L.M. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88-92, 2010.

    Dierlamm, J., Baens, M., Wlodarska, I., Stefanova-Ouzounova, M., Hernandez, J.M., Hossfeld, D.K., De Wolf-Peeters, C., Hagemeijer, A., Van den Berghe, H., and Marynen, P. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601-3609, 1999.

    Du, M.Q. MALT lymphoma : recent advances in aetiology and molecular genetics. J Clin Exp Hematop 47, 31-42, 2007.

    Duwel, M., Welteke, V., Oeckinghaus, A., Baens, M., Kloo, B., Ferch, U., Darnay, B.G., Ruland, J., Marynen, P., and Krappmann, D. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 182, 7718-7728, 2009.

    Edwards, P.M. Origin 7.0: Scientific graphing and data analysis software. Journal of Chemical Information and Computer Sciences 42, 1270-1271, 2002.

    Eibl, C., Hessenberger, M., Wenger, J., and Brandstetter, H. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. Acta Crystallogr D Biol Crystallogr 70, 2007-2018, 2014.

    Eitelhuber, A.C., Vosyka, O., Nagel, D., Bognar, M., Lenze, D., Lammens, K., Schlauderer, F., Hlahla, D., Hopfner, K.P., Lenz, G., Hummel, M., Verhelst, S.H., and Krappmann, D. Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas. Chem Biol 22, 129-138, 2015.

    Emsley, P., and Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132, 2004.

    Gaide, O., Martinon, F., Micheau, O., Bonnet, D., Thome, M., and Tschopp, J. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-kappaB activation. FEBS Lett 496, 121-127, 2001.

    Gilmore, T.D. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684, 2006.

    Grabiner, B.C., Blonska, M., Lin, P.C., You, Y., Wang, D., Sun, J., Darnay, B.G., Dong, C., and Lin, X. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-{kappa}B activation. Genes Dev 21, 984-996, 2007.

    Gross, O., Gewies, A., Finger, K., Schafer, M., Sparwasser, T., Peschel, C., Forster, I., and Ruland, J. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651-656, 2006.

    Hadian, K., Griesbach, R.A., Dornauer, S., Wanger, T.M., Nagel, D., Metlitzky, M., Beisker, W., Schmidt-Supprian, M., and Krappmann, D. NF-kappaB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-kappaB activation. J Biol Chem 286, 26107-26117, 2011.

    Hailfinger, S., Nogai, H., Pelzer, C., Jaworski, M., Cabalzar, K., Charton, J.E., Guzzardi, M., Decaillet, C., Grau, M., Dorken, B., Lenz, P., Lenz, G., and Thome, M. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci U S A 108, 14596-14601, 2011.

    Hayden, M.S., and Ghosh, S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26, 203-234, 2012.

    Herman, M.D., Moche, M., Flodin, S., Welin, M., Tresaugues, L., Johansson, I., Nilsson, M., Nordlund, P., and Nyman, T. Structures of BIR domains from human NAIP and cIAP2. Acta Crystallogr Sect F Struct Biol Cryst Commun 65, 1091-1096, 2009.

    Holliday, M.J., Witt, A., Rodriguez Gama, A., Walters, B.T., Arthur, C.P., Halfmann, R., Rohou, A., Dueber, E.C., and Fairbrother, W.J. Structures of autoinhibited and polymerized forms of CARD9 reveal mechanisms of CARD9 and CARD11 activation. Nat Commun 10, 3070, 2019.

    Hsu, Y.M., Zhang, Y., You, Y., Wang, D., Li, H., Duramad, O., Qin, X.F., Dong, C., and Lin, X. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 8, 198-205, 2007.

    Huang, D.B., Huxford, T., Chen, Y.Q., and Ghosh, G. The role of DNA in the mechanism of NFkappaB dimer formation: crystal structures of the dimerization domains of the p50 and p65 subunits. Structure 5, 1427-1436, 1997.

    Huxford, T., Huang, D.B., Malek, S., and Ghosh, G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 95, 759-770, 1998.

    Ismail, I.H., Dronyk, A., Hu, X., Hendzel, M.J., and Shaw, A.R. BCL10 is recruited to sites of DNA damage to facilitate DNA double-strand break repair. Cell Cycle 15, 84-94, 2016.

    Israel, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2, a000158, 2010.

    Jang, T.H., Park, J.H., and Park, H.H. Novel disulfide bond-mediated dimerization of the CARD domain was revealed by the crystal structure of CARMA1 CARD. PLoS One 8, e79778, 2013.

    Jeltsch, K.M., Hu, D., Brenner, S., Zoller, J., Heinz, G.A., Nagel, D., Vogel, K.U., Rehage, N., Warth, S.C., Edelmann, S.L., Gloury, R., Martin, N., Lohs, C., Lech, M., Stehklein, J.E., Geerlof, A., Kremmer, E., Weber, A., Anders, H.J., Schmitz, I., Schmidt-Supprian, M., Fu, M., Holtmann, H., Krappmann, D., Ruland, J., Kallies, A., Heikenwalder, M., and Heissmeyer, V. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat Immunol 15, 1079-1089, 2014.

    Jiang, C., and Lin, X. Regulation of NF-kappaB by the CARD proteins. Immunol Rev 246, 141-153, 2012.

    Jost, P.J., Weiss, S., Ferch, U., Gross, O., Mak, T.W., Peschel, C., and Ruland, J. Bcl10/Malt1 signaling is essential for TCR-induced NF-kappaB activation in thymocytes but dispensable for positive or negative selection. J Immunol 178, 953-960, 2007.

    Jun, J.E., Wilson, L.E., Vinuesa, C.G., Lesage, S., Blery, M., Miosge, L.A., Cook, M.C., Kucharska, E.M., Hara, H., Penninger, J.M., Domashenz, H., Hong, N.A., Glynne, R.J., Nelms, K.A., and Goodnow, C.C. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751-762, 2003.

    Kersse, K., Verspurten, J., Vanden Berghe, T., and Vandenabeele, P. The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36, 541-552, 2011.

    Klein, T., Fung, S.Y., Renner, F., Blank, M.A., Dufour, A., Kang, S., Bolger-Munro, M., Scurll, J.M., Priatel, J.J., Schweigler, P., Melkko, S., Gold, M.R., Viner, R.I., Regnier, C.H., Turvey, S.E., and Overall, C.M. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-kappaB signalling. Nat Commun 6, 8777, 2015.

    Krissinel, E. Crystal contacts as nature's docking solutions. J Comput Chem 31, 133-143, 2010.

    Lamothe, B., Besse, A., Campos, A.D., Webster, W.K., Wu, H., and Darnay, B.G. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282, 4102-4112, 2007.

    Laplantine, E., Fontan, E., Chiaravalli, J., Lopez, T., Lakisic, G., Veron, M., Agou, F., and Israel, A. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J 28, 2885-2895, 2009.

    Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1, a001651, 2009.

    Lenz, G., Davis, R.E., Ngo, V.N., Lam, L., George, T.C., Wright, G.W., Dave, S.S., Zhao, H., Xu, W., Rosenwald, A., Ott, G., Muller-Hermelink, H.K., Gascoyne, R.D., Connors, J.M., Rimsza, L.M., Campo, E., Jaffe, E.S., Delabie, J., Smeland, E.B., Fisher, R.I., Chan, W.C., and Staudt, L.M. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676-1679, 2008.

    Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., Moriarty, N.W., Oeffner, R.D., Poon, B.K., Prisant, M.G., Read, R.J., Richardson, J.S., Richardson, D.C., Sammito, M.D., Sobolev, O.V., Stockwell, D.H., Terwilliger, T.C., Urzhumtsev, A.G., Videau, L.L., Williams, C.J., and Adams, P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861-877, 2019.

    Lin, S.C., Lo, Y.C., and Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890, 2010.

    Lucas, P.C., Kuffa, P., Gu, S., Kohrt, D., Kim, D.S., Siu, K., Jin, X., Swenson, J., and McAllister-Lucas, L.M. A dual role for the API2 moiety in API2-MALT1-dependent NF-kappaB activation: heterotypic oligomerization and TRAF2 recruitment. Oncogene 26, 5643-5654, 2007.

    Lucas, P.C., Yonezumi, M., Inohara, N., McAllister-Lucas, L.M., Abazeed, M.E., Chen, F.F., Yamaoka, S., Seto, M., and Nunez, G. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 276, 19012-19019, 2001.

    Matsumoto, R., Wang, D., Blonska, M., Li, H., Kobayashi, M., Pappu, B., Chen, Y., Wang, D., and Lin, X. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23, 575-585, 2005.

    McAllister-Lucas, L.M., Ruland, J., Siu, K., Jin, X., Gu, S., Kim, D.S., Kuffa, P., Kohrt, D., Mak, T.W., Nunez, G., and Lucas, P.C. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc Natl Acad Sci U S A 104, 139-144, 2007.

    Moreno-Garcia, M.E., Sommer, K., Shinohara, H., Bandaranayake, A.D., Kurosaki, T., and Rawlings, D.J. MAGUK-controlled ubiquitination of CARMA1 modulates lymphocyte NF-kappaB activity. Mol Cell Biol 30, 922-934, 2010.

    Muller, J.R., and Siebenlist, U. Lymphotoxin beta receptor induces sequential activation of distinct NF-kappa B factors via separate signaling pathways. J Biol Chem 278, 12006-12012, 2003.

    Naik, E., and Dixit, V.M. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCbeta Kinase Activity. J Immunol 196, 3438-3451, 2016.

    Oeckinghaus, A., Hayden, M.S., and Ghosh, S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12, 695-708, 2011.

    Oeckinghaus, A., Wegener, E., Welteke, V., Ferch, U., Arslan, S.C., Ruland, J., Scheidereit, C., and Krappmann, D. Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J 26, 4634-4645, 2007.

    Otwinowski, Z., and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326, 1997.

    Park, H.H., Lo, Y.C., Lin, S.C., Wang, L., Yang, J.K., and Wu, H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25, 561-586, 2007a.

    Park, H.H., Logette, E., Raunser, S., Cuenin, S., Walz, T., Tschopp, J., and Wu, H. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128, 533-546, 2007b.

    Park, Y., Jin, H.S., and Liu, Y.C. Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex. Proc Natl Acad Sci U S A 110, 9433-9438, 2013.

    Plotnik, J.P., Richardson, A.E., Yang, H., Rojas, E., Bontcheva, V., Dowell, C., Parsons, S., Wilson, A., Ravanmehr, V., Will, C., Jung, P., Zhu, H., Partha, S.K., Panchal, S.C., Mali, R.S., Kohlhapp, F.J., McClure, R.A., Ramathal, C.Y., George, M.D., Jhala, M., Elsen, N.L., Qiu, W., Judge, R.A., Pan, C., Mastracchio, A., Henderson, J., Meulbroek, J.A., Green, M.R., and Pappano, W.N. Inhibition of MALT1 and BCL2 Induces Synergistic Antitumor Activity in Models of B-Cell Lymphoma. Mol Cancer Ther 23, 949-960, 2024.

    Qiao, G., Li, Z., Molinero, L., Alegre, M.L., Ying, H., Sun, Z., Penninger, J.M., and Zhang, J. T-cell receptor-induced NF-kappaB activation is negatively regulated by E3 ubiquitin ligase Cbl-b. Mol Cell Biol 28, 2470-2480, 2008.

    Qiao, Q., Yang, C., Zheng, C., Fontan, L., David, L., Yu, X., Bracken, C., Rosen, M., Melnick, A., Egelman, E.H., and Wu, H. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51, 766-779, 2013.

    Qiu, L., and Dhe-Paganon, S. Oligomeric structure of the MALT1 tandem Ig-like domains. PLoS One 6, e23220, 2011.

    Quancard, J., Klein, T., Fung, S.Y., Renatus, M., Hughes, N., Israel, L., Priatel, J.J., Kang, S., Blank, M.A., Viner, R.I., Blank, J., Schlapbach, A., Erbel, P., Kizhakkedathu, J., Villard, F., Hersperger, R., Turvey, S.E., Eder, J., Bornancin, F., and Overall, C.M. An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol 15, 304-313, 2019.

    Rebeaud, F., Hailfinger, S., Posevitz-Fejfar, A., Tapernoux, M., Moser, R., Rueda, D., Gaide, O., Guzzardi, M., Iancu, E.M., Rufer, N., Fasel, N., and Thome, M. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9, 272-281, 2008.

    Regnier, C.H., Song, H.Y., Gao, X., Goeddel, D.V., Cao, Z., and Rothe, M. Identification and characterization of an IkappaB kinase. Cell 90, 373-383, 1997.

    Rothwarf, D.M., Zandi, E., Natoli, G., and Karin, M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395, 297-300, 1998.

    Rueda, D., and Thome, M. Phosphorylation of CARMA1: the link(er) to NF-kappaB activation. Immunity 23, 551-553, 2005.

    Ruefli-Brasse, A.A., French, D.M., and Dixit, V.M. Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581-1584, 2003.

    Ruland, J., Duncan, G.S., Elia, A., del Barco Barrantes, I., Nguyen, L., Plyte, S., Millar, D.G., Bouchard, D., Wakeham, A., Ohashi, P.S., and Mak, T.W. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-kappaB and neural tube closure. Cell 104, 33-42, 2001.

    Saijo, K., Schmedt, C., Su, I.H., Karasuyama, H., Lowell, C.A., Reth, M., Adachi, T., Patke, A., Santana, A., and Tarakhovsky, A. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4, 274-279, 2003.

    Scheidereit, C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25, 6685-6705, 2006.

    Schlauderer, F., Lammens, K., Nagel, D., Vincendeau, M., Eitelhuber, A.C., Verhelst, S.H., Kling, D., Chrusciel, A., Ruland, J., Krappmann, D., and Hopfner, K.P. Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase. Angew Chem Int Ed Engl 52, 10384-10387, 2013.

    Schlauderer, F., Seeholzer, T., Desfosses, A., Gehring, T., Strauss, M., Hopfner, K.P., Gutsche, I., Krappmann, D., and Lammens, K. Molecular architecture and regulation of BCL10-MALT1 filaments. Nat Commun 9, 4041, 2018.

    Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675, 2012.

    Schulze-Luehrmann, J., and Ghosh, S. Antigen-receptor signaling to nuclear factor kappa B. Immunity 25, 701-715, 2006.

    Scott, F.L., Stec, B., Pop, C., Dobaczewska, M.K., Lee, J.J., Monosov, E., Robinson, H., Salvesen, G.S., Schwarzenbacher, R., and Riedl, S.J. The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457, 1019-1022, 2009.

    Sen, R., and Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716, 1986.

    Shambharkar, P.B., Blonska, M., Pappu, B.P., Li, H., You, Y., Sakurai, H., Darnay, B.G., Hara, H., Penninger, J., and Lin, X. Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. EMBO J 26, 1794-1805, 2007.

    Shinohara, H., Yasuda, T., Aiba, Y., Sanjo, H., Hamadate, M., Watarai, H., Sakurai, H., and Kurosaki, T. PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med 202, 1423-1431, 2005.

    Sommer, K., Guo, B., Pomerantz, J.L., Bandaranayake, A.D., Moreno-Garcia, M.E., Ovechkina, Y.L., and Rawlings, D.J. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23, 561-574, 2005.

    Staal, J., Driege, Y., Bekaert, T., Demeyer, A., Muyllaert, D., Van Damme, P., Gevaert, K., and Beyaert, R. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30, 1742-1752, 2011.

    Strasser, D., Neumann, K., Bergmann, H., Marakalala, M.J., Guler, R., Rojowska, A., Hopfner, K.P., Brombacher, F., Urlaub, H., Baier, G., Brown, G.D., Leitges, M., and Ruland, J. Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32-42, 2012.

    Su, T.W., Yang, C.Y., Kao, W.P., Kuo, B.J., Lin, S.M., Lin, J.Y., Lo, Y.C., and Lin, S.C. Structural Insights into DD-Fold Assembly and Caspase-9 Activation by the Apaf-1 Apoptosome. Structure 25, 407-420, 2017.

    Sun, L., Deng, L., Ea, C.K., Xia, Z.P., and Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14, 289-301, 2004.

    Sun, S.C. Non-canonical NF-kappaB signaling pathway. Cell Res 21, 71-85, 2011.

    Sun, Z., Arendt, C.W., Ellmeier, W., Schaeffer, E.M., Sunshine, M.J., Gandhi, L., Annes, J., Petrzilka, D., Kupfer, A., Schwartzberg, P.L., and Littman, D.R. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404, 402-407, 2000.

    Tak, P.P., and Firestein, G.S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107, 7-11, 2001.

    Tanner, M.J., Hanel, W., Gaffen, S.L., and Lin, X. CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor-induced NF-kappaB activation. J Biol Chem 282, 17141-17147, 2007.

    Turvey, S.E., Durandy, A., Fischer, A., Fung, S.Y., Geha, R.S., Gewies, A., Giese, T., Greil, J., Keller, B., McKinnon, M.L., Neven, B., Rozmus, J., Ruland, J., Snow, A.L., Stepensky, P., and Warnatz, K. The CARD11-BCL10-MALT1 (CBM) signalosome complex: Stepping into the limelight of human primary immunodeficiency. J Allergy Clin Immunol 134, 276-284, 2014.

    Uren, A.G., O'Rourke, K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., and Dixit, V.M. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6, 961-967, 2000.

    Wang, L., Yang, J.K., Kabaleeswaran, V., Rice, A.J., Cruz, A.C., Park, A.Y., Yin, Q., Damko, E., Jang, S.B., Raunser, S., Robinson, C.V., Siegel, R.M., Walz, T., and Wu, H. The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nat Struct Mol Biol 17, 1324-1329, 2010.

    Wegener, E., Oeckinghaus, A., Papadopoulou, N., Lavitas, L., Schmidt-Supprian, M., Ferch, U., Mak, T.W., Ruland, J., Heissmeyer, V., and Krappmann, D. Essential role for IkappaB kinase beta in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation. Mol Cell 23, 13-23, 2006.

    Wiesmann, C., Leder, L., Blank, J., Bernardi, A., Melkko, S., Decock, A., D'Arcy, A., Villard, F., Erbel, P., Hughes, N., Freuler, F., Nikolay, R., Alves, J., Bornancin, F., and Renatus, M. Structural determinants of MALT1 protease activity. J Mol Biol 419, 4-21, 2012.

    Willis, T.G., Jadayel, D.M., Du, M.Q., Peng, H., Perry, A.R., Abdul-Rauf, M., Price, H., Karran, L., Majekodunmi, O., Wlodarska, I., Pan, L., Crook, T., Hamoudi, R., Isaacson, P.G., and Dyer, M.J. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35-45, 1999.

    Woronicz, J.D., Gao, X., Cao, Z., Rothe, M., and Goeddel, D.V. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278, 866-869, 1997.

    Wu, C.J., and Ashwell, J.D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 105, 3023-3028, 2008.

    Wu, H. Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287-292, 2013.

    Wu, H., and Fuxreiter, M. The Structure and Dynamics of Higher-Order Assemblies: Amyloids, Signalosomes, and Granules. Cell 165, 1055-1066, 2016.

    Xia, M., David, L., Teater, M., Gutierrez, J., Wang, X., Meydan, C., Lytle, A., Slack, G.W., Scott, D.W., Morin, R.D., Onder, O., Elenitoba-Johnson, K.S.J., Zamponi, N., Cerchietti, L., Lu, T., Philippar, U., Fontan, L., Wu, H., and Melnick, A.M. BCL10 Mutations Define Distinct Dependencies Guiding Precision Therapy for DLBCL. Cancer Discov 12, 1922-1941, 2022.

    Yang, H., Minamishima, Y.A., Yan, Q., Schlisio, S., Ebert, B.L., Zhang, X., Zhang, L., Kim, W.Y., Olumi, A.F., and Kaelin, W.G., Jr. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell 28, 15-27, 2007.

    Yin, H., Karayel, O., Chao, Y.Y., Seeholzer, T., Hamp, I., Plettenburg, O., Gehring, T., Zielinski, C., Mann, M., and Krappmann, D. A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-kappaB signaling in activated T cells. Cell Mol Life Sci 79, 112, 2022.

    Yu, J.W., Jeffrey, P.D., Ha, J.Y., Yang, X., and Shi, Y. Crystal structure of the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) paracaspase region. Proc Natl Acad Sci U S A 108, 21004-21009, 2011.

    Yuan, S., Yu, X., Topf, M., Ludtke, S.J., Wang, X., and Akey, C.W. Structure of an apoptosome-procaspase-9 CARD complex. Structure 18, 571-583, 2010.

    Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M., and Karin, M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91, 243-252, 1997.

    Zeng, H., Di, L., Fu, G., Chen, Y., Gao, X., Xu, L., Lin, X., and Wen, R. Phosphorylation of Bcl10 negatively regulates T-cell receptor-mediated NF-kappaB activation. Mol Cell Biol 27, 5235-5245, 2007

    無法下載圖示 校內:2029-12-04公開
    校外:2029-12-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE