簡易檢索 / 詳目顯示

研究生: 石富勻
Shih, Fu-Yun
論文名稱: 幾丁聚醣添加對LiMn2O4陰極薄膜製程及 其電化學性能效益之研究
Effect of Chitosan Addition on Deposition and Electrochemical Behaviors of Thin-Film LiMn2O4 Cathodes by Sol-Gel Method
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 鋰離子電池幾丁聚醣
外文關鍵詞: Li-ion batteries, chitosan
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於溶膠-凝膠法不需要昂貴設備、製程簡易以及薄膜組成和微結構易控制等特點,為目前廣泛採用薄膜製程之一。然而,以溶膠-凝膠法製備LiMn2O4薄膜,其性質易受前驅物溶液本質影響,例如沉澱物之形成或前驅物溶液與基材間附著性差造成膜厚不均等問題。因此,在本研究中提出以幾丁聚醣為添加劑,發現幾丁聚醣添加除了可穩定含醋酸鋰/醋酸錳乙醇溶液長達十個月未發現沉澱物,而且對單相LiMn2O4薄膜形成、
    緻密化以及其電化學性質都有明顯提升。FT-IR和7Li NMR光譜之分析,發現當醋酸鋰/醋酸錳加入幾丁聚醣後,鋰/錳離子自醋酸中解離,隨後與幾丁聚醣的胺基發生化學鍵結,這可使鋰/錳離子達分子級分散,因而抑制雜相生成。此外,在利用上述前驅物溶液製備LiMn2O4薄膜過程中,也發現適當熱處理程序可促進LiMn2O4薄膜的緻密化。熱分析顯示幾丁聚醣熱分解起始溫度約為300℃,因此藉由300℃和緩熱分解,可抑制孔洞的形成以及誘使奈米尺度LiMn2O4晶粒生成,隨後更高溫度(≧400℃)熱處理將促使晶粒進一步成長而形成一緻密薄膜。充放電測試實驗顯示,由於幾丁聚醣添加可抑制雜相生成,因此所製備LiMn2O4薄膜陰極,具有較大放電容量(在1C 放電速率下,具有134 mAh/g)和較高速率容量性能(8C放電容量約為1C放電容量86.4%)。
    此外也發現,等量添加下,含幾丁聚醣前驅物溶液黏滯度較含聚乙烯喀酮前驅物溶液黏滯度高,在薄膜製備過程中證實適度提高溶液黏滯度是有助於LiMn2O4膜沉積。在電化學行為方面,由於幾丁聚醣和聚乙烯喀酮在300℃即分解,因此沉積自上述兩種前驅物溶液之LiMn2O4薄膜,在經700℃熱處理後,充放電行為並沒有顯現明顯差異。

    Sol-gel method is one of the methods which were widely employed to fabricate thin films, due to low cost, simple processing and ease of controlling the composition stoichiometry and desired microstructure. However, the quality of the deposited LiMn2O4 films was highly dependent on the nature of the precursor solution. For example, the poor wettability between the precursor solution and substrate resulted in a inhomogenous film. Thus, in this study, a natural biomaterial, chitosan, was used as an additive. It was found that the addition of chiotsan can not only stabilize the lithium/manganese acetates-containing ethanol solution with no formation of precipitates for at least 10 months, but also be beneficial to the formation of a single-phase LiMn2O4 film. This is attributed to the chelating between chitosan and Li+/Mn2+ ions. Moreover, the electrochemical tests also showed that the LiMn2O4 film deposited from the chitosan-added precursor solution exhibits a higher discharge capacity of 134 mAh/g at 1C and a better rate performance (86.4% of the discharge capacity at 1C can be maintained when the discharge rate increases from 1C up to 8C) in comparison with one from the chitosan-free solution.
    On the other hand, dense LiMn2O4 films deposited on a Pt-coated silicon substrate were obtained by annealing the deposited Li-Mn-O-chitosan films under a two-stage heat-treatment procedure. It was demonstrated that the preheat-treatment at 300℃plays an important role in the densification of LiMn2O4 films. This is due to the inhibition of forming pores and the formation of the nano-sized LiMn2O4 crystallites. And a postheat-treatment at a higher temperature (≧400℃) in the second stage will lead to the crystal growth of LiMn2O4 nanocrystallites and the formation of a dense LiMn2O4 film. Furthermore, the electrochemical performance of the LiMn2O4 films deposited from the chitosan-added precursor solution was dependent on the annealing temperatures. The LiMn2O4 film calcined at 700℃ for 1 h showed the highest Li-ion diffusion coefficient, 1.55×10-12 cm2/s among all calcined films. It is due to the larger interistial space and better crystal perfection of LiMn2O4 film calcined at 700℃. Thus, the 700℃-calcined LiMn2O4 film exhibited the best rate performance in comparison with the ones calcined at other temperatures.
    The effect of the addition of chitosan or PVP in the precursor solution on the deposition and electrochemical properties of LiMn2O4 films was also studied. Due to the adequate viscosity of the chitosan-added precursor solution, the films deposited from the chitosan-added precursor solution showed a higher deposition rate than ones from the PVP-added solution under the same coating parameters. And the charge-discharge tests indicate that the addition of chitosan or PVP in the precursor solution shows little difference on the electrochemical properties of the resultant LiMn2O4 films. Owing to the low thermal decomposition temperature of both chitosan and PVP (about 300℃), a heat-treatment of 700℃ would result in the complete removal of chitosan or PVP in the prepared films. Thus, these LiMn2O4 films prepared from either the chitosan- or PVP-added precursor solutions exhibit no discernible difference in the electrochemical behaviors.

    總目錄 中文摘要…………………………………………………I 英文摘要………………………………………………III 總目錄………………………………………………… VI 圖目錄………………………………………………… XI 表目錄………………………………………………XVIII 英漢名詞對照表………………………………………XIX 第一章 緒論…………………………………………… 1 1-1 前言…………………………………………………1 1-2 研究動機及目的……………………………………5 第二章 理論基礎與文獻回顧………………………… 8 2-1 幾丁聚醣……………………………………………8 2-1-1 幾丁質和幾丁聚醣簡介…………………………8 2-1-2 幾丁聚醣之物理及化學性質……………………8 2-1-3幾丁聚醣之應用…………………………………12 2-2 尖晶石LiMn2O4基本性質…………………………16 2-2-1 Li-Mn-O相圖……………………………………16 2-2-2 LiMn2O4晶體結構………………………………18 2-2-3 電化學性質…………………………………… 18 2-2-4 電性質………………………………………… 21 2-2-5 化學穩定性…………………………………… 22 第三章 實驗方法與步驟………………………………24 3-1 實驗流程………………………………………… 24 3-2 化學藥品選用…………………………………… 25 3-3 LiMn2O4薄膜製備…………………………………25 3-3-1 前驅物溶液配製……………………………… 25 3-3-2 基材準備……………………………………… 25 3-3-3 Li-Mn-O-chitosan膜製備…………………… 25 3-3-4 熱處理………………………………………… 27 3-4 材料分析………………………………………… 27 3-4-1 LiMn2O4薄膜重量量測…………………………27 3-4-2 熱重/熱差分析…………………………………27 3-4-3 傅氏轉換紅外線光譜分析…………………… 27 3-4-4 7Li核磁共振光譜分析…………………………28 3-4-5 X-ray繞射分析…………………………………28 3-4-6 穿透式電子顯微鏡…………………………… 28 3-4-7掃瞄式電子顯微鏡………………………………29 3-4-8膜厚和粗糙度量測………………………………29 3-4-9 鍍膜組成分析………………………………… 29 3-4-10 動態機械性質分析……………………………29 3-5 電化學分析……………………………………… 30 3-5-1 電池組裝……………………………………… 30 3-5-1-1 陰極………………………………………… 30 3-5-1-2 陽極及參考電極…………………………… 30 3-5-1-3 電解質及隔離膜…………………………… 30 3-5-2 充放電測試 ……………………………………30 3-5-3 鋰離子擴散係數量測………………………… 32 第四章 幾丁聚醣添加對單相LiMn2O4薄膜生成及其電化學行為的影響…………………………………………… 33 4-1 含醋酸鋰/醋酸錳乙醇溶液之穩定性……………33 4-2 醋酸鋰/醋酸錳沉積膜之熱分解…………………35 4-3 含幾丁聚醣之醋酸鋰/醋酸錳沉積膜之熱分解…42 4-4幾丁聚醣與金屬離子(Li+/Mn2+)間的化學鍵結…45 4-4-1 FT-IR光譜分析…………………………………45 4-4-2 7Li核磁共振光譜分析…………………………47 4-5幾丁聚醣添加對LiMn2O4膜微結構的影響……… 49 4-6幾丁聚醣添加對LiMn2O4膜電化學性質的影響… 52 4-6-1 幾丁聚醣添加對LiMn2O4膜速率容量性能的影響……………………………………………………… 52 4-6-2 低掃瞄速率循環伏安法量測鋰離子擴散係數之理論基礎…………………………………………………… 54 4-6-3 幾丁聚醣添加對LiMn2O4膜鋰離子擴散係數的影響……………………………………………………… 57 4-7 小結……………………………………………… 65 第五章 熱處理對鋰-錳-氧-幾丁聚醣薄膜表面形態及緻密性的影響……………………………………………… 66 5-1 熱處理溫度對鋰-錳-氧-幾丁聚醣薄膜微結構的影響……………………………………………………… 66 5-1-1 鋰-錳-氧-幾丁聚醣薄膜在熱處理下表面形態的變化……………………………………………………… 66 5-1-2 鋰-錳-氧-幾丁聚醣薄膜之熱流動性…………66 5-2 兩步驟熱處理程序對LiMn2O4薄膜緻密化的影響70 5-2-1 前處理溫度對抑制細孔形成的影響………… 70 5-2-2 奈米尺寸LiMn2O4晶粒生成的影響……………73 5-3 小結……………………………………………… 77 第六章 熱處理溫度對LiMn2O4薄膜電化學性質的影響……………………………………………………… 78 6-1 熱處理溫度對LiMn2O4薄膜鋰離子擴散速率的影響……………………………………………………… 78 6-2 電位跳躍計時安培分析法量測鋰離子擴散係數之理論基礎…………………………………………………… 81 6-3 熱處理溫度對LiMn2O4薄膜鋰離子擴散係數的影響……………………………………………………… 84 6-4 LiMn2O4膜結晶特性對鋰離子擴散係數的影響…88 6-5 小結……………………………………………… 93 第七章 螯合劑添加對LiMn2O4薄膜製備之比較…… 94 7-1 起始物濃度對LiMn2O4膜沉積的影響……………94 7-2螯合劑添加對前驅物溶液黏滯度的影響…………98 7-3 螯合劑添加對LiMn2O4膜電化學性質的影響… 102 7-4 小結………………………………………………102 第八章 總結論 ………………………………………105 參考文獻………………………………………………107 致謝……………………………………………………121 自述……………………………………………………122 圖目錄 Fig. 1-1 Schematic illustration of a stacking thin-film batter.……………………………………4 Fig. 2-1 Chemical structures of chitin and chitosan.………………………………………………9 Fig. 2-2 Phase diagram of the system Li-Mn-O in air between 350 and 1060℃.…………………… 17 Fig. 2-3 Structure of LiMn2O4 spinel (a) unit cell and (b) diffusion path of lithium.…… 19 Fig. 2-4 Open circuit voltage (OCV) curve of LiXMn2O4 (0<x<2) at 30℃.……………………… 20 Fig. 2-5 Electrical conductivity of Li1.006Mn1.994O4 plotted as a function of temperature.…………………………………………23 Fig. 3-1 Schematic illustration for (a) two-electrode (b) three-electrode testing cell.…………………………………………………………31 Fig. 4-1 FT-IR spectra of (a) precipitate from the manganese acetate-containing ethanol solution (b) Mn(CH3COO)2.4H2O.……………………………34 Fig. 4-2 TG/DTA curves of the film deposited from lithium/manganese acetates-containing precursor solution with no chitosan addition.………… 36 Fig. 4-3 FT-IR spectra of the films deposited from lithium/manganese acetates-containing precursor solution with no chitosan addition and calcined at various temperatures for 1 h.… 38 Fig. 4-4 GXRD traces of the films deposited from lithium/manganese acetates-containing precursor solution with no chitosan addition and calcined at various temperatures for 1 h.………………40 Fig. 4-5 TG/DTA curves of the films deposited from lithium/ manganese acetates-containing precursor solution with chitosan addition.…43 Fig. 4-6 FT-IR spectra of the films deposited from lithium/manganese acetates-containing precursor solution with chitosan addition and calcined at various temperatures for 1 h.… 44 Fig. 4-7 GXRD traces of the films deposited from lithium/manganese acetates-containing precursor solution with chitosan addition and calcined at various temperatures for 1 h.………………… 46 Fig. 4-8 FT-IR spectra of (a) chitosan (b) lithium acetate-chitosan (c) manganese acetate-chitosan (d) lithium/manganese-chitosan precursors in the wavenumber range from 800 to 2000 cm-1.……………………………………………48 Fig. 4-9 7Li NMR spectra of (a) lithium acetate (b) lithium acetate-chitosan precursor.…… 50 Fig. 4-10 SEM micrographs of the prepared films calcined at 300℃ for 1 h and subsequently at 700℃ for another 1 h from both chitosan-free ((a) top view (b) cross section) and chitosan-added ((c) top view (d) cross section) precursor solutions.……………………………………………51 Fig. 4-11 Discharge curves of the 700℃-calcined films deposited from (a) chitosan-free (b) chitosan-added precursor solutions under various discharge rates.……………………………………53 Fig. 4-12 Cyclic voltamograms of the 700℃-calcined film deposited from (a) chitosan-free (b) chitosan-added precursor solutions under various potential sweep rates, .…………… 58 Fig. 4-13 Dependence of Ip plotted as a function of for the 700℃-calcined film deposited from (a) chitosan-free (b) precursor solutions.…59 Fig. 4-14 Schematic illustration: the blocking effect of Mn2O3 grains in LiMn2O4 film on Li-ion transport.……………………………………………62 Fig. 4-15 The electrochemical cycling behavior of the 700℃-calcined LiMn2O4 films deposited from the chitosan-free and chitosan-added precursor solutions. The electrochemical cell is cycled between 3.2 and 4.3 V at 1C rate.…………… 63 Fig. 4-16 Typical microstructures of the thin-film cathodes deposited from the (a) chitosan-free and (b) chitosan-added precursor solutions containing acetates after 50 charge/discharge cycles.……………………………………………… 64 Fig. 5-1 Surface morphology of the deposited films from lithium/manganese acetates-containing precursor solution with chitosan addition after being heated at (a) 100℃ (b) 200℃ (c) 300℃ (d) 400℃ (e) 500℃ (f) 600℃ for 1 h.……………67 Fig. 5-2 Typical dynamic mechanical spectrum of Li-Mn-O-chitosan film.……………………………69 Fig. 5-3 SEM micrographs of cross section of the deposited films from lithium/manganese acetates-containing precursor solution with chitosan addition after being heated at (a) 300℃ (b) 500℃ (c) 700℃ for 1 h.…………………………71 Fig. 5-4 The relative shrinkage in thickness of the deposited films from lithium/manganese acetates-containing precursor solution with chitosan addition after being heated at various temperatures for 1 h. (Tbe stands for the thickness of deposited film before the heat-treatment and Taf is the thickness after heat-treatment)……………………………………………72 Fig. 5-5 (a) TEM bright-field image (b) selected-area electron diffraction of the 300℃-pyrolyzed Li-Mn-O-chitosan film and (c) TEM bright-field image for the 300℃-pyrolyzed Li-Mn-O-chitosan film after being further heated at 700℃ for 1 h.…………………………………………………………75 Fig. 5-6 SEM micrographs of spinel LiMn2O4 film deposited from lithium/manganese acetates-containing precursor solution with chitosan addition after being heat-treated by a two-stage heat-treatment procedure at 300 and 700℃, respectively, for 1 h (a) top view (b) cross section.………………………………………………76 Fig. 6-1 Cyclic voltammograms of the LiMn2O4 films deposited from lithium/manganese acetates-containing precursor solution with chitosan addition after being calcined at 300℃ for 1 h and subsequently at higher temperatures for another 1 h with a sweep rate of 0.2 mV/s.…………………………………………………………79 Fig. 6-2 Discharge curves of the LiMn2O4 thin-film cathodes calcined at 300℃ for 1 h and subsequently at (a) 400℃ (b) 500℃ (c) 600℃ (d) 700℃ (e) 800℃ for another 1 h at a current density of 20μA/cm2 (A) and (b) 40μA/cm2 (B).…………………………………………………………82 Fig.6-3 (a) Current transient of LiMn2O4 thin-film cathode calcined at 700℃ for 1 h from the PSCA measurement in the potential range 4.14-4.15 V vs. Li/Li+ (b) Plot of ln (I) vs. t from the PSCA measurement.………………………………… 86 Fig. 6-4 GXRD traces of LiMn2O4 films deposited from lithium/manganese acetates-containing precursor solution with chitosan addition and calcined at different temperatures for 1 h (a) 400℃ (b) 500℃ (c) 600℃ (d) 700℃ (e) 800 (f) 900℃.…………………………………………………89 Fig. 6-5 (a) Effect of the calcination temperature on the lattice parameter of LiMn2O4 films (b) Dependence of the Li-ion diffusion coefficient plotted as a function of lattice parameter of LiMn2O4 films.…………………… 90 Fig. 6-6 (a) Effect of the calcination temperature on the crystallinity of LiMn2O4 films (b) Dependence of the Li-ion diffusion coefficient plotted as a function of the crystallinity of LiMn2O4 films.……………… 92 Fig. 7-1 Dynamic viscosity of the precursor solution plotted as a function of the amount of chitosan.…………………………………………………………95 Fig. 7-2 Roughness variation of LiMn2O4 films fabricated from the precursor solution with various concentrations of chitosan. (The concentration of acetate salts in precursor solution is fixed at 0.5 M)…………………… 96 Fig. 7-3 Dependence of the thickness of the prepared films vs. the concentration of acetate salts added. (All films were measured after five-time spin-coating under a spinning speed of 2500 rpm and the concentration of chitosan is fixed at 2.5 g/L)………………………………………………97 Fig. 7-4 Dynamic viscosity of the precursor solution plotted as a function of the amount of chitosan and PVP.…………………………………100 Fig. 7-5 Dependence of the thickness of the deposited LiMn2O4 film plotted as a function of coating time.………………………………………101 Fig. 7-6 Cycling discharge curves of Li/liquid electrolyte (LiPF6)/LiMn2O4 cell using the films deposited from the acetates-containing precursor solutions (a) with chitosan addition (b) with PVP of MW~10000 addition (c) with PVP of MW~360000 addition.……………………………………………103 表目錄 Table 3-1 Chemicals used in this study.……26 Table 4-1 Chemical analysis of the deposited LiMn2O4 flms calcined at 300℃ for 1 h and subsequently at higher temperatures for another 1 h.…………………………………………………… 41 Table 6-1 Kinetic diagnoatic: Ep-Ep/2 values evaluated from Fig. 6-1.……………………… 80 Table 6-2 Summary of the estimated diffusion coefficients of LiMn2O4 films calcined at different temperatures based on both cyclic voltammetry (CV) and potential step chronoamperometry (PSCA) methods.……………87 Table 7-1 The optimal composition of the precursor solution in present study.……… 99 英漢名詞對照表 Active RFID 主動式射頻辨識元件 Aldehyde 乙醛 Aminated 氨化 Chemical solution deposition 化學溶液沉積法 Chemical vapor deposition 化學氣象沉積法 Chitosan 幾丁聚醣 Chitin 幾丁質 Collagen 膠原蛋白 Carboxylic 羧酸 Crystalline index 結晶性指數 Chelate 螯合 Deacetylation 去乙醯反應 DMA 動態機械性質分析 Electron beam evaporation 電子束蒸鍍法 Electrostatic spray deposition 靜電噴霧沉積法 Ethylene glycol 乙二醇 Edge-sharing 共用邊 FT-IR 傅氏轉換紅外線光譜分析儀 Face-sharing 共用面 Gelatin 明膠 Glucosamine 葡萄醣胺 Glutaraldehyde 戊二醛 Glycerol 甘油 ICP-AES 感應耦合漿將原子發射光譜分析儀 Intercalation 嵌入 LSMCD 液態源霧化沉積法 Lithium acetylacetonate 乙醯丙酮鋰 Lithium isopropoxide 丙氧化鋰 Manganese acetylacetonate 乙醯丙酮錳 Nonstoichiometric 非組成計量 NMR 核磁共振光譜分析儀 Open circuit voltage 開路電位 Pulse laser deposition 脈衝雷射沉積法 Polyvinylpyrrolidone 聚乙烯喀酮 Protonated 質子化 Precursor 前驅物 PSCA 電位跳躍計時安培分析法 R.F. sputtering 射頻濺鍍法 SSCV 低掃瞄速率伏安循環法 Selected area electron diffraction 選區電子繞射 Scaffold 鷹架材 TG/DTA 熱重/熱差分析

    [1] K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo,“Thin Film Solid Electrolyte and Its Application to Secondary Lithium Cell”, Solid State Ionocs 9-10 1445 (1983).
    [2] R.B. Goldner, T.Y. Liu, S. Slaven,“A Transient Method for Measuring Diffusion Coefficient of Thin Film Battery Electrodes-Results for LiyCoO2 and LixC6 Thin Films”, Journal of the Electrochemical Society 143 L129 (1996).
    [3] J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney,“Preferred Orientation of Polycrystalline LiCoO2 Films”, Journal of the Electrochemical Society 147 59 (2000).
    [4] N.J. Dudney, J.B. Bates, R.A. Zuhr, S. Young, J.D. Robertson, H.P. Jun, S.A. Hackney,“Nanocrystalline LixMn2-yO4 Cathodes for Solid-State Thin-Film Rechargeable Lithium Batteries”, Journal of the Electrochemical Society 146 2455 (1999).
    [5] S. Komaba, N. Kumagai, M. Baba, F. Miura, N. Fujita, H. Groult, D. Devilliers, B. Kaplan,“Preparation of Li–Mn–O Thin Films by r.f.-Sputtering Method and Its Application to Rechargeable Batteries”, Journal of Applied Electrochemistry 30 1179 (2000).
    [6] H.-S. Moon, J.-W. Park,“Improvement of Cyclability of LiMn2O4 Thin Films by Transition-Metal Substitution”, Journal of Power Sources 119-121 717 (2003).
    [7] K.-F. Chiu, H.H. Hsiao, G.G. Chen, H.L. Liu, J.L. Her, H.C. Lin,“Structural Evolution and Stability of RF Sputter Deposited LixMn2-yO4 Thin Film Cathodes”, Journal of the Electrochemical Society 151 A452 (2004).
    [8] K.A. Striebel, A. Rougier, C.R. Horne, R.P. Reade, E.J. Cairns,“Electrochemical Studies of Substituted Spinel Thin Films”, Journal of the Electrochemical Society 146 4339 (1999).
    [9] D. Singh, W.-S. Kim, V. Craciun, H. Hofmann, R.K. Singh,“Defective Lithium Manganospinel Films with Excellent Electrochemical Characteristics”, Electrochemical and Solid-State Letters 5 A198 (2002).
    [10] I. Yamada, T. Abe, Y. Iriyama, Z. Ogumi,“Lithium-ion transfer at LiMn2O4 thin film electrode prepared by pulsed laser deposition”, Electrochemistry Communications 5 502 (2003).
    [11] M. Mohamedi, D. Takahashi, T. Itoh, M. Umeda, I. Uchida,“ESD Fabricated Thin Films of Spinel LiMn2O4 for Lithium Microbatteries: I. Effect of Thickness”, Journal of the Electrochemical Society 149 A19 (2002).
    [12] D. Shu, G. Kumar, K.-B. Kim, K.S. Ryu, S.H. Chang,“Surface modification of LiMn2O4 thin films at elevated temperature”, Solid State Ionics 160 227 (2003).
    [13] J.L. Shui, G.S. Jiang, S. Xie, C.H. Chen,“Thin Films of Lithium Manganese Oxide Spinel as Cathode Materials for Secondary Lithium Batteries”, Electrochimica Acta 49 2209 (2004).
    [14] K.W. Kim, M.R. Kim, S.-W. Lee, K.-S. Han, S.I. Woo,“The Characterization of LiMn2O4 Thin Film Cathode for Lithium Rechargeable Microbattery Prepared by Liquid Source Misted Chemical Deposition”, Chemical Vapor deposition 9 187 (2003).
    [15] Y.J. Park, J.G. Kim, M.K. Kim, H.T. Chung, W.-S. Um, M.h. Kim, H.G. Kim,“Fabrication of LiMn2O4 Thin Films by Sol–Gel Method for Cathode Materials of Microbattery”, Journal of Power Sources 76 41 (1998).
    [16] Y.J. Park, J.G. Kim, M.K. Kim, H.T. Chung, H.G. Kim,“Preparation of LiMn2O4 Thin Films by a Sol–Gel Method”, Solid state Ionics 130 203 (2000).
    [17] X.M. Wu, X.H. Li, M.F. Xu, Y.H. Zhang, Z.Q. He, Z. Wang,“Preparation of LiMn2O4 Thin Films by Aqueous Solution Deposition”, Materials Research Bulletin 37 2345 (2002).
    [18] X.M. Wu, X.H. Li, Z. Wang, Z.B. Xiao, J Liu, W.B. Yan,“Characterization of Solution-Derived LiMn2O4 Thin Films Heated Treated by Rapid Thermal Annealing”, Materials Chemistry and Physics 83 78 (2004).
    [19] Y. Matsuo, R. Kostecki, F. McLarnon,“Surface Layer Formation on Thin-Film LiMn2O4 Electrodes at Elevated Temperatures”, Journal of the Electrochemical Society 148 A692 (2001).
    [20] Y.H. Rho, K. Kanamura, T. Umegaki,“LiCoO2 and LiMn2O4 Thin-Film Electrodes for Rechargeable Lithium Batteries - Preparation Using PVP Sol-Gel to Produce Excellent Electrochemical Properties”, Journal of the Electrochemical Society 150 A107 (2003).
    [21] B.-O. Jung, C.-H. Kim, K.-S. Choi, Y.M. Lee, J.-J. Kim,“Preparation of Amphiphilic chitosan and Their Antimicrobial Activities”, Journal of Applied Polymer Science 72 1713 (1999).
    [22] S. Senel, S.J. McClure,“Potential Application of Chitosan Veterinary Medicine”, Advanced Drug Delivery Reviews 56 1467 (2004).
    [23] F. Ham-Pichavant, G. Sebe, P. Pardon, V. Coma,“Fat Resistance Properties of Chitosan-Based Paper Packaging for Food Applications”, Carbohydrate Polymers 61 259 (2005).
    [24] A.K. Anal, W.F. Stevens,“Chitosan-Alginate Multilayer Beads for Controlled Release of Ampicillin”, International Journal of Pharmaceutics 290 45 (2005).
    [25] W.H. Jiang, S.J. Han,“Study of Interaction Between Polyethylene Glycol and Chitosan by Viscosity Method”, Journal of Polymer Scinece B 36 1275 (1998).
    [26] W.H. Jiang, S.J. Han,“The Interactions of Chitosan-Poly(ethylene glycol) in the Presence of Added Salt in Water: Viscosity Effect”, European Polymer Journal 35 2079 (1999).
    [27] M.R. Kasaai, J. Arul, C. Charlet,“Intrinsic Viscosity-Molecular Weight Relationship for Chitosan”, Journal of Polymer Scinece B 38 2591 (2000).
    [28] J. Desbrieres,“Viscosity of Semiflexible Chitosan Solutions: Influence of Concentration, Temperature, and Role of Intermolecular Interactions”, Biomacromolecules 3 342 (2002).
    [29] N.R. Sudarshan, D.G. Hoover, D. Knoor,“Antibacterial Action of Chitosan”, Food Biotechnology 6 257 (1992).
    [30] W.G. Liu, K.D. Yao,“Chitosan and its Derivatives- A Promising Non-Viral Vector for Gene Transfection”, Journal of Controlled Release 83 1 (2002).
    [31] N.E. Suyatma, L. Tighzert, A. Copinet, V. Coma,“Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films”, Journal of Agricultural and Food Chemistry 53 3950 (2005).
    [32] S.J. Kim, S.R. Shin, S.M. Lee, I.Y. Kim, S.I. Kim,“Thermal Characteristics of Polyelectrolyte Complexes Composed of Chitosan and Hyaluronic Acid”, Journal of Macromolecular Science A 40 807 (2003).
    [33] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han,“Collagen/Chitosan Porous Scaffolds with Improved Biostability for Skin Tissue Engineering”, Biomaterials 24 4833 (2003).
    [34] J. Mao, L. Zhao, K.D. Yao, Q. Shang, G. Yang, Y. Cao, “Study of Novel Chitosan-Gelatin Artificial Skin in vitro”, Journal of Biomedical Materials Research A 64 301 (2003).
    [35] H.F. Mark, N.M. Bikales, C.G. Overbeger, G. Menges, Encyclopedia of Polymer Science and Engineering, Wiley, New York, vol. 1, p. 20, 1985.
    [36] Y. Kawamura, H. Yoshida, S. Asai, I. Kurahashi, H. Tanible,“Effects of Chitosan Concentration and Precipitation Bath Concentration on the Material Properties of Porous Crosslinked Chitosan Beads”, Separation Science and Technology 32 1959 (1997).
    [37] P.K. Dutta, M.N.V. Ravikumar, J. Dutta,“Chitin and Chitosan for Versatile Applications”, Journal of Macromolecular 42 307(2002).
    [38] S. Schlick,“Binding Sites of Cu2+ in Chitin and Chitosan. An Electron Spin resonance Study”, Macromolecules 19 192 (1986).
    [39] M. Rhazi, J. Desbrires, A. Tolaimate, M. Rinaudo, P. Vottero, A. Alagui,“Contribution to the Study of the Complexation of Copper by Chitosan and Oligomers”, Polymer 43 1267 (2002).
    [40] C. Jeon, K.H. Park,“Adsorption and Desorption Characteristics of Mercury(II) Ions Using Aminated Chitosan Bead”, Water Research 39 3938 (2005).
    [41] G. McKay, H.S. Blair, J.R. Gardner,“Adsorption of Dyes on Chitin. I. Equilibrium Studies”, Journal of Applied Polymer science 27 3043 (1989).
    [42] R. Maruca, B. Jo Suder, J.P. wightman,“Interaction of Heavy Metals with Chitin and Chitosan”, Journal of Applied Polymer science 27 4827 (1989).
    [43] O. Munjeri, J.H. Collett, J.T. Fell,“Hydrogel Beads Based on Amidated Pectins for Colon-Specific Drug Delivery: the Role of Chitosan in Modifying Drug Release”, Journal of Controlled Release 46 273 (1997).
    [44] Q. Wang, Y.-M. Du, Li.-H. Fan,“Properties of Chitosan/Poly(vinyl alcohol) Films for Drug-Controlled Release”, Journal of Applied Polymer Science 96 808 (2005).
    [45] X.Y. Shi, T.W. Tan,“New Contact Lens Based on Chitosan/Gelatin Composites”, Journal of Bioactive and Compatible Polymers 19 467 (2004).
    [46] N.M. Morni, A.K. Arof,“Chitosan-Lithium Triflate Electrolyte in Secondary Lithium Cells”, Journal of Power Sources 77 42 (1999).
    [47] A.K. Arof, Z. Osman, N.M. Morni, N. Kamarulzaman, Z.A. Ibrahim, M.R. Muhamad,“Chitosan-Based Electrolyte for Secondary Lithium Cells”, Journal of Materials Science 36 791 (2001).
    [48] N. Kamarulzaman, Z. Osman, M.R. Muhamad, Z.A. Ibrahim, A.K. Arof, N.S. Mohamed,“Performance Characteristics of LiMn2O4/Polymer/Carbon Electrochemical Cells”, Journal of Power Sources 97-98 722 (2001).
    [49] M.Z.A. Yahya, A.K. Arof,“Conductivity and X-Ray Photoelectron Studies on Lithium Acetate Doped Chitosan Films”, Carbohydrate Polymers 55 95 (2004).
    [50] M.M. Thackeray, M.F. Mansuetto, D.M. Dees, D.R. Vissers,“The Thermal Stability of Lithium-Manganese-Oxide Spinel Phase”, Materials Research Bulletin 31 133 (1996).
    [51] Y. Xia, Y. Zhou, M. Yoshio,“Capacity fading on Cycling of 4V Li/LiMn2O4 Cells”, Journal of the Electrochemical Society 144 2593 (1997).
    [52] J.M. Paulsen, J.R. Dahn,“Phase Diagram of Li-Mn-O Spinel in Air”, Chemistry of Materials 11 3065 (1999).
    [53] M. wakihara,“Recent Developments in Lithium Ion Batteries”, Materials Science and Engineering R 33 109 (2001).
    [54] W. Liu, K. Kowal, G.C. Farrington,“Mechanism of the Electrochemical Insertion of Lithium into LiMn2O4 Spinel”, Journal of the Electrochemical Society 145 459 (1998).
    [55] J. Baker, R. Koksbang, M.Y. Saidi,“Lithium Insertion in Manganese Oxides: A Model Lithium Ion System”, Solid State Ionics 82 143 (1995).
    [56] J. Guan, M. Liu,“Transport Properties of LiMn2O4 electrode materials for Lithium-Ion Batteries”, Solid State Ionics 110 21 (1998).
    [57] J. molenda, W. Kucza,“Transport Properties of LiMn2O4”, Solid State Ionics 117 41 (1999).
    [58] J. Molenda, K. Swierczek, W. Kucza, J. Marzec, a. Stoklosa,“Electrical Properties of at temperatures 220-1100K”, Solid State Ionics 123 155 (1999).
    [59] J. Molenda, K. Swierczek, M. Molenda, J. Marzec,“Electronic Structure and reactivity of cathode”, Solid State Ionics 135 53 (2000).
    [60] J. Marzec, K. swierczek, J. Przecwoznik, J. molenda, D.R. Simon, E.M. Kelder, J. Schoonman,“Conduction Mechanism in Operating a LiMn2O4 Cathode”, Solid State Ionics 146 225 (2002).
    [61] G. Rousse, C. Masquelier, J. Rodriquez-Carvajal, M. Hervieu,“Cubic Orthorhombic Transition in the Stoichiometric Spinel LiMn2O4”, Electrochemical and Solid-State Letters 2 6 (1999).
    [62] A. Du Pasquier, A. Blyr, P. Courjal, D. larcher, G. Amatucci, B. Gerand, J.-M. Tarascon,“Mechanism for Limited 55℃ storage Performance of Electrodes”, Journal of the Electrochemical Society 146 428 (1999).
    [63] Y. Xia, T. Fujieda, K. tatsumi, P.P. Prosini, T. Sakai,“Thermal and electrochemical stability of cathode materials in Solid polymer Electrolyte”, Journal of Power Sources 92 234 (2001).
    [64] A.M. Heyns,“The Low-temperature Infrared Spectra of the Copper(II) Acetates”, Journal of Molecular Structure 11 93 (1972).
    [65] G.S. Raghuvanshi, M. Pal, M.B. Patel, H.D. Bist,“Vibrational Spectra and Phase Transitions in Ni(CH3COO)24X2O(X=H, D)”, Journal of Molecular Structure 101 7 (1983).
    [66] Z. Nickolov, G. Georgiev, D. Stoilova, I. Ivanov,“Raman and IR study of cobalt acetate dihydrate”, Journal of Organic Chemistry 604 119 (1995).
    [67] F. Quiles, A. Burneau,“Infrared and Raman spectra of alkaline-earth and copper(II) acetates in aqueous solutions”, Vibrational Spectroscopy 16 105 (1998).
    [68] V. Zelenak, Z. Vargova, K. Gyoryova, E. Vecernikova, V. Balek,“Copper(II) Acetates with Aliphatic/Heterocyclic Amines Coupled TG-DTA-EGA Study, IR Characterization and Structure Correlation”, Journal of Thermal Analysis and Calorimetry 82 747 (2005).
    [69] H. Stephen, T. Stephen, Solubilities of Inorganic and Organic Compounds, Pergamon Press, New York, 1963.
    [70] E.-H. M. Diefallah,“Kinetic analysis of Thermal Decomposition Reactions. Part VI. Thermal Decomposition of Manganese(II) Acetate Tetrahydrate”, Thermochimica Acta 202 1 (1992).
    [71] M.A. Mohamed, S.A. Halawy,“Kinetic and Mechanistic Study of the Non-Isothermal Decomposition of Manganese(II) acetate tetrahydrate”, Thermochimica Acta 242 173 (1994).
    [72] G.E. Tobon-Zapata, E.G. Ferrer, S.B. Etcheverry, E.J. Baran,“Thermal Behaviour of Pharmacologically Active Lithium Compounds”, Journal of Thermal Analysis and Calorimetry 61 29 (2000).
    [73] F. Yao, W. Chen, H. Wang, H. Liu, K. Yao, P. Sun, H. Lin,“A Study on Cytocompatible Poly(chitosan-g-l-lactic acid)”, Polymer 44 6435 (2003).
    [74] C. Zhang, Q. Ping, H. Zhang, J. Shen,“Synthesis and Characterization of Water-Soluble O-Succinyl-Chitosan”, European Polymer Journal 39 1629 (2003).
    [75] S.J. Kim, S.R. Shin, Y.M. Lee, S.I. Kim,“Swelling Characterizations of Chitosan and Polyacrylonitrile Semi-Interpenetrating Polymer Network Hydrogels”, Journal of Applied Polymer Science 87 2011 (2003).
    [76] A.J. Bard, L.R. Faulkner, Electrochemical methods, Wiley, New York, p. 226, 2001.
    [77] C. Julien, E. Haro-Poniatowski, M.M. Camacho-Lopez, L. Escobar-Alarcon, J. Jimenez-Jarquin,“Growth of LiMn2O4 Thin Films by Pulsed-Laser Deposition and their Electrochemical Properties in Lithium Microbatteries”, Materials Science and Engineering B 72 36 (2000).
    [78] K.A. Striebel, C.Z. Deng, S.J. Wen, E.J. Cairns,“Electrochemical Behavior of LiMn2O4 and LiCoO2 Thin Films Produced with Pulsed Laser Deposition”, Journal of the Electrochemical Society 143 1821 (1996).
    [79] A. Rougier, K.A. Striebel, S.J. Wen, E.J. Cairns,“Cyclic Voltammetry of Pulsed Laser Deposited LixMn2O4 Thin Films”, Journal of the Electrochemical Society 145 2975 (1998).
    [80] D. Shu, K.Y. Chung, W.I. Cho, K.B. Kim,“Electrochemical Investigations on Electrostatic Spray Deposited LiMn2O4 Films”, Journal Power Sources 114 253 (2003).
    [81] S.D. Das, S.B. Majumder, R.S. Katiyar,“Kinetic Analysis of the Li+ Ion Intercalation Behavior of Solution Derived Nano-Crystalline Lithium Manganate Thin Films”, Journal Power Sources 139 261 (2005).
    [82] T. Ohzuku, M. Kitagawa, T. Hirai,“Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. III. X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese Dioxide”, Journal of the Electrochemical Society 137 769 (1990).
    [83] Y. Xia, M. Yoshio,“An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds”, Journal of the Electrochemical Society 143 825 (1990).
    [84] K. Ogura, T. Kanamoto, M. Itoh, H. Miyashiro, K. Tanaka,“Dynamic Mechanical Behavior of Chitin and Chitosan”, Polymer Bulltin 2(5) 301 (1980).
    [85] K. Sakurai, T. Maegawa, T. Takahashi,“Glass Transition Temperature of Chitosan and Miscibility of Chitosan/Poly(N-vinyl pyrrolidone) Blends”, Polymer 41 7051 (2000).
    [86] K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari,“EIS and GITT Studies on Oxide Cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3)”, Electrochimica Acta 48 2691 (2003).
    [87] T. Tsumura, A. Shimizu, M. Inagaki,“Lithium Extraction/Insertion from LiMn2O4 - Effect of Crystallinity”, Solid State Ionics 90 197 (1996).
    [88] T. Tsumura, M. Inagaki,“Preparation of LiMn2O4 via Dicarboxylates and their Lithium Extraction/Insertion Behavior”, Solid State Ionics 104 35 (1997).
    [89] D. Ahn, M.Y. Song,“Variations of the Electrochemical Properties of LiMn2O4 with Synthesis Conditions”, Journal of the Electrochemical Society 147 874 (2000).
    [90] N. Nishioka, S. Hamabe, T. Murakami, T. Kitagawa,“Thermal Decomposition Behavior of Miscible Cellulose/Synthetic Polymer Blends”, Journal Applied Polymer Science 69 2133 (1998).
    [91] Z. Li, Y. Du, Z. Zhang, D. Pang,“Preparation and Characterization of CdS Quantum Dots Chitosan Biocomposite”, Reactive and Functional Polymers 55 35 (2003).
    [92] W. Tang, C. Wang, D. Chen,“Kinetic studies on the pyrolysis of chitin and chitosan”, Polymer Degradation and Stability 87 389 (2005).
    [93] C. Guan, D. Chen, W. Tang, C. Liu,“Properties and Thermal Degradation Study of Blend Films with Poly(4-vinylpyridine) and Lignin”, Journal Applied Polymer Science 97 1875 (2005).

    下載圖示 校內:2009-07-04公開
    校外:2009-07-04公開
    QR CODE