簡易檢索 / 詳目顯示

研究生: 黃穎俊
Huang, Ying-Jun
論文名稱: 使用BSIM-CMG 進行氧化物半導體建模與SRAM設計以及低溫CMOS SRAM設計
Compact Modeling with BSIM-CMG and SRAM Design for Oxide Semiconductor and Cryogenic CMOS
指導教授: 盧達生
Lu, Dar-Sen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 83
中文關鍵詞: 氧化物半導體緊湊模型單體3D 元件CMOS SRAM低溫VminSNM閾值電壓
外文關鍵詞: oxide semiconductors, compact model, M3D, CMOS SRAM, cryogenic, Vmin, SNM, threshold voltage
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重於開發用於氧化物半導體(如IGZO 和InO)的緊湊模型,並研究其在各種應用中的行為。氧化物半導體因其高遷移率、透明性、低溫加工能力和適用於大面積基板的優點,在現代電子設備中具有重要應用。透過使用BSIM-CMG 模型,我們可以精確模擬這些氧化物半導體薄膜晶體管(TFTs)的特性,並進一步用於基本電路如反相器、振盪器和SRAM 電路,或是其他基於氧化物半導體的Monolithic 3D (M3D)元件的設計和模擬。
    此外,隨著量子計算等前沿技術的發展,CMOS SRAM 在低溫下的特性研究變得愈發重要。低溫操作可以提高SRAM 的電性能,包括增加載流子遷移率、減少漏電流、改善亞閾值擺幅以及臨界電壓的變化,從而提升內存操作的速度和效率。本研究探索了在不同溫度條件(300K, 200K, 120K, 77K, 4K)下的40nm 製程之SRAM 特性,例如最小操作電壓(Vmin) 和靜態噪聲容限(SNM),為低溫環境下的低功耗高效存儲解決方案的開發提供了支持。
    透過結合氧化物半導體建模和低溫CMOS SRAM 測量結果,我們希望推進低溫電子學領域的研究,特別是用於存儲應用的IGZO 基低溫SRAM 的研究。這一整合不僅可以擴展我們在低溫環境下的電子設備理解和能力,還能在未來電子學中實現更可靠的操作和更高的性能。

    This study focuses on developing compact models for oxide semiconductors, such as IGZO and InO, and investigating their behavior in various applications. Oxide semiconductors are of significant importance in modern electronic devices due to their high mobility, transparency, low-temperature processing capability, and suitability for large-area substrates. By employing the BSIM-CMG model, we can accurately simulate the characteristics of these oxide semiconductor thin-film transistors (TFTs) and further use them in the design and simulation of basic circuits such as inverters, oscillators, and SRAM circuits, as well as other oxide semiconductor-based Monolithic 3D (M3D) components.
    In addition, with the advancement of frontier technologies such as quantum computing, the study of CMOS SRAM characteristics at low temperatures has become increasingly important. Low-temperature operation can enhance the electrical performance of SRAM, including increased carrier mobility, reduced leakage current, improved subthreshold slope and changes in threshold voltage, thereby improving the speed and efficiency of memory operations. This study explores the characteristics of 40nm CMOS SRAM under different temperature conditions (300K, 200K, 120K, 77K, 4K), such as the minimum operatingvoltage (Vmin) and static noise margin (SNM), providing support for the development of low-power, high-efficiency memory solutions in cryogenic environments.
    By integrating oxide semiconductor modeling with low-temperature CMOS SRAM measurements, we aim to advance research in the field of cryogenic electronics, particularly the study of IGZO-based cryogenic SRAM for storage applications. This integration not only expands our understanding and capabilities of electronic devices in low-temperature environments but also enables more reliable operation and higher performance in future electronics.

    摘要 I Abstract II Acknowledgement III Content IV List of Figures VI Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Research Objective 4 Chapter 2. Literature Review 5 2.1 Oxide Semiconductor 5 2.1.1 Thin-Film Transistor (TFT) 5 2.1.2 Physics of a-IGZO and InO 6 2.1.2.1 Composition and structure 6 2.1.2.2 Density of States (DOS) 8 2.1.2.3 Fermi-Dirac Distribution and Carrier Density 10 2.1.2.4 Conduction Mechanism 12 2.1.2.5 Field Mobility with Vgs Dependence 13 2.1.2.6 Current and Voltage Relation 15 2.1.2.7 Sub-threshold Region 15 2.1.2.8 Threshold Voltage 16 2.1.2.9 Counterclockwise Hysteresis of Ids-Vgs curve 18 2.1.2.10 Unusual gate current 19 2.2 Cryogenic SRAM 21 2.2.1 Cryogenic physics 21 2.2.1.1 Threshold Voltage 21 2.2.1.2 Surface Roughness and Coulombic Scattering 23 2.2.2 Cryogenic SRAM Characteristics 24 Chapter 3. Methodology 28 3.1 Parameter Extraction 28 3.1.1 BSIM-CMG and Verilog-A 28 3.1.2 Extraction Platform Buildup 29 3.1.3 Parameter Extraction Process 31 3.2 Cryogenic SRAM 34 3.2.1 Design and tape-out 35 3.2.2 Cryogenic SRAM measurement 38 Chapter 4. Results and Discussion 41 4.1 Oxide Semiconductor Compact Modeling 41 4.1.1 Fitting result of InO TFTs 41 4.1.2 Fitting results of a-IGZO TFTs 42 4.2 Oxide Semiconductor Device Circuit Simulation 46 4.2.1 Stacked IGZO Device 46 4.2.2 Inverter simulation 49 4.2.2.1 Inverter for positive threshold voltage 49 4.2.2.2 Inverter for negative threshold voltage 52 4.2.3 Ring Oscillator 54 4.2.4 IGZO SRAM Simulation 56 4.2.4.1 Hold static noise margin of IGZO SRAM 57 4.2.4.2 Read noise margin of SRAM 58 4.3 Cryogenic SRAM characterization 59 4.3.1 Measurement Results 59 4.3.2 Vmin of SRAM 60 4.3.3 SNM of SRAM 62 Chapter 5. Conclusions and Future Work 65 5.1 Conclusions 65 5.1.1 Oxide semiconductor compact modeling and circuit design 65 5.1.2 Cryogenic SRAM characterization 65 5.2 Future works 66 Answers to Thesis Defense Questions 67 Reference 71

    [1] Y Zhu, Y L He, S S Jiang, L Zhu, C S Chen, Q Wan, Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications[J]. J. Semicond., 2021, 42(3): 031101. doi: 10.1088/1674-4926/42/3/031101.
    [2] Fortunato, E., Braguinho, P. and Martins, R. (2012), Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances. Adv. Mater., 24: 2945-2986.
    [3] Weimer, Paul K. “The TFT A New Thin-Film Transistor.” Proceedings of the IRE 50 (1962): 1462-1469.
    [4] Acharya, Vishwas & Agarwal, Kushagra & Mondal, Sandip. (2023). Electronic Materials for Solution-Processed TFTs. Materials Research Express. 10. 10.1088/2053-1591/acec36.
    [5] Troughton, Joseph and Del Atkinson. “Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status.” Journal of Materials Chemistry C (2019): n. pag.
    [6] D. B. Buchholz, Q. Ma, D. Alducin, A. Ponce, M. Jose-Yacaman, R. Khanal, J. E. Medvedeva, and R. P. H. Chang, "The Structure and Properties of Amorphous Indium Oxide," *Chem. Mater.*, vol. 26, no. 18, pp. 5401-5411, Sep. 2014, doi: 10.1021/cm502689x.
    [7] Rajshekar, K., Kannadassan, D. A comprehensive density-of-states model for oxide semiconductor thin film transistors. J Comput Electron 20, 2331–2341 (2021). https://doi.org/10.1007/s10825-021-01783-8
    [8] S. Lee, S. Jeon and A. Nathan, "Modeling Sub-Threshold Current–Voltage Characteristics in Thin Film Transistors," in Journal of Display Technology, vol. 9, no. 11, pp. 883-889, Nov. 2013, doi: 10.1109/JDT.2013.2256878.
    [9] X. Cheng, S. Lee, G. Yao and A. Nathan, "TFT Compact Modeling," in Journal of Display Technology, vol. 12, no. 9, pp. 898-906, Sept. 2016, doi: 10.1109/JDT.2016.2556980.
    [10] Z.-Y. Li, S.-M. Song, W.-X. Wang, J.-H. Gong, Y. Tong, M.-J. Dai, S.-S. Lin, T.-L. Yang, and H. Sun, "Effect of oxygen partial pressure on the performance of homojunction amorphous In-Ga-Zn-O thin-film transistors," *Nanotechnology*, vol. 34, no. 2, pp. 025702, Oct. 2022. DOI: 10.1088/1361-6528/ac990f.
    [11] Alwin Daus, Christian Vogt, Niko Münzenrieder, Luisa Petti, Stefan Knobelspies, Giuseppe Cantarella, Mathieu Luisier, Giovanni A. Salvatore, Gerhard Tröster; Positive charge trapping phenomenon in n-channel thin-film transistors with amorphous alumina gate insulators. J. Appl. Phys. 28 December 2016; 120 (24): 244501. https://doi.org/10.1063/1.4972475
    [12] T. Lim, J. Bae, B. Han, A. Ali and J. Jang, "Artificial Synaptic InGaZnO Thin-Film Transistor with Long Retention Behavior Using Al2O3/SiO2 Gate Insulator," in IEEE Transactions on Electron Devices, vol. 70, no. 1, pp. 135-139, Jan. 2023, doi: 10.1109/TED.2022.3224419.
    [13] Lee, J., Lim, KH. & Kim, Y.S. Effects of Unusual Gate Current on the Electrical Properties of Oxide Thin-Film Transistors. Sci Rep 8, 13905 (2018). https://doi.org/10.1038/s41598-018-32233-4
    [14] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais and C. Enz, "Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 780-788, 2020, doi: 10.1109/JEDS.2020.2989629.
    [15] F. Balestra and G. Ghibaudo, "Physics and performance of nanoscale semiconductor devices at cryogenic temperatures," *Semiconductor Science and Technology*, vol. 32, no. 2, pp. 023002, Jan. 2017. DOI: 10.1088/1361-6641/32/2/023002.
    [16] P. Gaubert, A. Teramoto, S. Sugawa and T. Ohmi, "The role of the temperature on the scattering mechanisms limiting the electron mobility in metal-oxide-semiconductor field-effect-transistors fabricated on (110) silicon-oriented wafers," 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bordeaux, France, 2012, pp. 213-216, doi: 10.1109/ESSDERC.2012.6343371.
    [17] V. P. -H. Hu and C. -J. Liu, "Static Noise Margin Analysis for Cryo-CMOS SRAM Cell," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-2, doi: 10.1109/RFIT52905.2021.9565260.
    [18] V. P. -H. Hu et al., "High-Density and High-Speed 4T FinFET SRAM for Cryogenic Computing," 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 8.6.1-8.6.4, doi: 10.1109/IEDM19574.2021.9720511.
    [19] S. S. Parihar, V. M. van Santen, S. Thomann, G. Pahwa, Y. S. Chauhan and H. Amrouch, "Cryogenic CMOS for Quantum Processing: 5-nm FinFET-Based SRAM Arrays at 10 K," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 8, pp. 3089-3102, Aug. 2023, doi: 10.1109/TCSI.2023.3278351.
    [20] BSIM-CMG 112.0.0beta0_4. https://bsim.berkeley.edu/models/bsimcmg/
    [21] Z. Wang et al., "Designing EDA-Compatible Cryogenic CMOS Platform for Quantum Computing Applications," 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 2021, pp. 1-3, doi: 10.1109/EDTM50988.2021.9420957.
    [22] Zhao, M., Zhang, Z., Xu, Y., Xu, D., Zhang, J., & Huang, Z. (2020). High-Performance Back-Channel-Etched Thin-Film Transistors with an InGaO/InZnO Stacked Channel. Physica Status Solidi A, 217(1), 1900773. DOI: 10.1002/pssa.201900773.
    [23] P. A. 't Hart, M. Babaie, E. Charbon, A. Vladimirescu, and F. Sebastiano, "Characterization and Modeling of Mismatch in Cryo-CMOS," *IEEE Journal of the Electron Devices Society*, vol. 8, pp. 237-245, Mar. 2020, doi: 10.1109/JEDS.2020.2976546.
    [24] T. -C. Huang et al., "Pseudo-CMOS: A novel design style for flexible electronics," 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 2010, pp. 154-159, doi: 10.1109/DATE.2010.5457220.

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE