| 研究生: |
陳威成 Chen, Wei-Cheng |
|---|---|
| 論文名稱: |
人工智慧(AI)演算法在瘋狗浪機率預警系統建置之研究 Application of AI technology on the development of freak wave probabilistic forecasting |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 人工智慧 、支撐向量機 、機率預測 、瘋狗浪 |
| 外文關鍵詞: | artificial intelligence, support vector machine, probability prediction, coastal freak wave |
| 相關次數: | 點閱:113 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣四面環海,海岸遊憩活動興盛,海岸瘋狗浪(coastal freak wave)常將海岸邊的遊客或是釣客捲入海中,其發生機制複雜至今仍未有理論可以完整說明,很難預測發生的時機和地點。近年因電腦計算能力增強,因此本研究利用人工智慧(AI)領域中能有效處理非線性、小樣本資料的支撐向量機(support vector machine, SVM)方法來建置瘋狗浪機率預警系統,並探討影響瘋狗浪發生的因子。
本研究根據現場光學監視站監測所得的瘋狗浪事件以及鄰近浮標數據做為分析資料,使用支撐向量機方法並採取網格搜尋法擬定訓練參數建置瘋狗浪預測模型,在瘋狗浪資料中找出最佳的分類依據並能對新的資料進行預測,驗證結果顯示模型預測效果良好,模型預測的正確率達75%。本研究透過探討不同因子對模式的影響程度,發現選取的13個潛在因子之間具有相關性,研究結果證實,使用全部因子來建置瘋狗浪預測模式能得到最佳的結果,其中,輸入因子中以方向類別因子(包含風向、波向)對結果的影響最顯著,其中以波向影響最大,代表波向是造成海岸瘋狗浪發生的重要關鍵。本研究也發現,當波浪週期較長、湧浪波高較高以及波向與風向方向較一致時,瘋狗浪有較高發生機率。
本文與前人以類神經網路建置之瘋狗浪預測模式結果進行比較,發現類神經網路方法在實際有瘋狗浪發生時的預測能力較佳,而支撐向量機無論實際瘋狗浪是否發生均能有良好的預測能力,顯示透過這類人工智慧技術均可合理預測海岸瘋狗浪發生機率。
Taiwan is surrounded by the sea, so and coastal recreational activities are thriving. Coastal freak waves often attack tourists or fisherman from the coast into the sea. The mechanism of coastal freak wave is complicated. But there is lack of theory that can fully explain its occurrence, and it is difficult to predict when and where will happen. Due to the increase in computer computing ability in recent years, this study uses the support vector machine (SVM) method in the field of artificial intelligence (AI), which can effectively process nonlinear and small quantity sample data, to build a coastal freak waves probability warning system and discusses the factors which affecting the occurrence of freak waves. In this study, the incidents of coastal freak wave are monitored by the on-site optical monitoring station and the adjacent buoy data was used. In training section, grid search method was applied to draw up training parameters to build a prediction model of coastal freak wave occurrence by SVM. Overall, the verification results show that the model has good predictive effect and accuracy rate that up to 75%. This study explores the degree of influence of different factors on the model and found that the selected 13 potential factors that affect the occurrence of coastal freak wave are correlated. The results of the study confirm that using all the factors to build the prediction model of freak wave can get the best results. Among the input factors, the direction category factors (including wind direction and wave direction) have the most significant influence on the results, and the wave direction has the greatest influence, which represents the wave direction is the important key to the occurrence of coastal freak wave. This study compares the results of the prediction model of freak wave that built by the artificial neural network (ANN), and finds that the ANN has the better predictive ability when the freak wave occurs, and the SVM predicts well whether freak wave occurs or not. The good predictive capabilities show that through this type of AI technology, the probability of occurrence of coastal freak wave can be reasonably predicted.
[1] 許明光、曾俊超、高家俊(1993),臺灣地區「瘋狗浪」之調查及成因初探,第十五屆海洋工程研討會論文集,第513-524頁。
[2] 李賢文(1998),「瘋狗浪」之初步研究,中央氣象局天氣分析與預報研討會,台北,第471-475頁。
[3] 蔡政翰、林盈成、曾相茂(2001),群波與瘋狗浪,海洋工程學刊,第一卷,第一期,第71-82頁。
[4] 陳冠宇(2002),瘋狗浪的可能機制,海洋工程學刊,第二卷,第一期,第93-106頁。
[5] 張振洋、蔡政翰(2005),堤前異常波浪與三連波的觀測,第27屆海洋工程研討會,第147-153頁。
[6] 劉俊志(2006),近岸突浪的分析探討,國立中山大學碩士論文。
[7] 王敘民、陳盈智、董東璟、滕春慈(2017),海岸瘋狗浪光學影像分析之研究,第39屆海洋工程研討會,第555-560頁。
[8] 蘇瑋琳(2018),應用資料探勘方法於瘋狗浪研究,國立成功大學碩士論文。
[9] 中央氣象局(2019),異常海象機率預警研究與作業試用,研究計畫報告。
[10] Abbot, J., & Marohasy, J. (2012). Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Advances in Atmospheric Sciences, 29(4), 717-730.
[11] Bui, D. T., Hoang, N. D., & Samui, P. (2019). Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Journal of Environmental Management, 237, 476-487.
[12] Burges, C. J. C. (1998). A tutorial on Support Vector Machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
[13] Chien, H., Kao, C.C., and Chuang, Z.H., On the characteristics of observation coastal freak waves, Coastal Engineering Journal, Vol. 44, No. 4, 301-319, 2002.
[14] Chang, C. C., & Lin, C. J. (2011). LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology, 2(3).
[15] Chen, S. T. (2013). Multiclass Support Vector Classification to estimate Typhoon Rainfall Distribution. Disaster Advances, 6(10), 110-121.
[16] Chen, S. T., & Wang, Y. W. (2020). Improving Coastal Ocean Wave Height Forecasting during Typhoons by using Local Meteorological and Neighboring Wave Data in Support Vector Regression Models. Journal of Marine Science and Engineering, 8(3).
[17] Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297.
[18] David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
[19] Doong, D. J., Chen, S. T., Chen, Y. C., & Tsai, C. H. (2020). Operational Probabilistic Forecasting of Coastal Freak Waves by Using an Artificial Neural Network. Journal of Marine Science and Engineering, 8(3).
[20] Doong, D. J., Peng, J. P., & Chen, Y. C. (2018). Development of a warning model for coastal freak wave occurrences using an artificial neural network. Ocean Engineering, 169, 270-280.
[21] Dyachenko, A. I., & Zakharov, V. E. (2005). Modulation instability of Stokes wave -> freak wave. Jetp Letters, 81(6), 255-259.
[22] Elbisy, M. S. (2015). Sea Wave Parameters Prediction by Support Vector Machine Using a Genetic Algorithm. Journal of Coastal Research, 31(4), 892-899.
[23] Fujimoto, W., Waseda, T., & Webb, A. (2019). Impact of the four-wave quasi-resonance on freak wave shapes in the ocean. Ocean Dynamics, 69(1), 101-121.
[24] Goda, Y., & Takagi, H. (2000). A reliability design method of caisson breakwaters with optimal wave heights. Coastal Engineering Journal, 42(4), 357-387.
[25] Jain, P., Deo, M. C., Latha, G., & Rajendran, V. (2011). Real time wave forecasting using wind time history and numerical model. Ocean Modelling, 36(1-2), 26-39.
[26] Janssen, P. A. E. M. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33(4), 863-884.
[27] Kagemoto, H. (2020). Forecasting a water-surface wave train with artificial intelligence- A case study. Ocean Engineering, 207.
[28] Karimpouli, S., & Tahmasebi, P. (2019). Segmentation of digital rock images using deep convolutional autoencoder networks. Computers & Geosciences, 126, 142-150.
[29] Mahjoobi, J., & Mosabbeb, E. A. (2009). Prediction of significant wave height using regressive support vector machines. Ocean Engineering, 36(5), 339-347.
[30] Makarynskyy, O., Pires-Silva, A. A., Makarynska, D., & Ventura-Soares, C. (2005). Artificial neural networks in wave predictions at the west coast of Portugal. Computers & Geosciences, 31(4), 415-424.
[31] Malekmohamadi, I., Bazargan-Lari, M. R., Kerachian, R., Nikoo, M. R., & Fallahnia, M. (2011). Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Engineering, 38(2-3), 487-497.
[32] Malekmohamadi, I., Ghiassi, R., & Yazdanpanah, M. J. (2008). Wave hindcasting by coupling numerical model and artificial neural networks. Ocean Engineering, 35(3-4), 417-425.
[33] Mori, N., & Janssen, P. A. E. M. (2006). On kurtosis and occurrence probability of freak waves. Journal of Physical Oceanography, 36(7), 1471-1483.
[34] Moussa, S. E. (2015). Sea Wave Parameters Prediction by Support Vector Machine Using a Genetic Algorithm. Journal of Coastal Research, 31(4), 892-899.
[35] Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based learning algorithms. Ieee Transactions on Neural Networks, 12(2), 181-201.
[36] Nourani, V., Kisi, O., & Komasi, M. (2011). Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. Journal of Hydrology, 402(1-2), 41-59.
[37] Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121.
[38] Perol, T., Gharbi, M., & Denolle, M. (2018). Convolutional neural network for earthquake detection and location. Science Advances, 4(2).
[39] Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Microsoft Research.
[40] Rodriguez-Delgado, C., Bergillos, R. J., & Iglesias, G. (2019). An artificial neural network model of coastal erosion mitigation through wave farms. Environmental Modelling & Software, 119, 390-399.
[41] Salcedo-Sanz, S., Borge, J. C. N., Carro-Calvo, L., Cuadra, L., Hessner, K., & Alexandre, E. (2015). Significant wave height estimation using SVR algorithms and shadowing information from simulated and real measured X-band radar images of the sea surface. Ocean Engineering, 101, 244-253.
[42] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y. T., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354-+.
[43] Tsai, C.H., Su, M.Y., and Huang, S.J. (2004). Observations and Conditions for Occurrence of Dangerous Coastal Waves, Ocean Engineering, Vol. 31, 745-760.
[44] Tamura, H., Waseda, T., Miyazawa, Y., Freakish sea state and well-windsea coupling: Numerical study of the Suwa-Maru incident. Geographical Research Letter, Vol.36, L01607, 2009.
[45] White, B. S., & Fornberg, B. (1998). On the chance of freak waves at sea. Journal of Fluid Mechanics, 355, 113-138.
[46] Xi, F. B., Pang, Y. K., Liu, G. X., Wang, S. W., Li, W., Zhang, C., & Wang, Z. L. (2019). Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy, 61, 1-9.
[47] Zakharov, V. E., Dyachenko, A. I., & Prokofiev, A. O. (2006). Freak waves as nonlinear stage of Stokes wave modulation instability. European Journal of Mechanics B-Fluids, 25(5), 677-692.