| 研究生: |
菲尼爾 Gally Frenel |
|---|---|
| 論文名稱: |
超高活性多金屬共摻雜之γ相氫氧化鎳析氧反應電催化劑 Multi-metal co-doped γ-NiOOH electrocatalysts for superior oxygen evolution reaction activity |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 羥基氧化鎳 、OER 、水分解 、電催化 |
| 外文關鍵詞: | Nickel oxyhydroxides, OER, water splitting, electrocatalysis |
| 相關次數: | 點閱:82 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尋求可再生能源一直是現代人類面臨的重大挑戰之一。在為克服這個問題而提出和探索的眾多解決方案中,析氧反應 OER 是其中之一。 OER 代表了通過水分解產生氫氣和氧氣的關鍵且方便的過程。然而,OER 的緩慢性質代表了一個瓶頸。貴金屬氧化物如 RuO2 和 IrO2 表現出優異的性能,但由於成本高且稀缺,不適合實際的大規模生產。因此,現在正在探索非貴金屬氧化物。因此,在此,我們通過快速簡便的化學浴沉積報告了一種基於 Fe、V、Cr、Ti 的高熵鎳基(羥基)氫氧化物。這種新型催化劑可在室溫下在工業泡沫鎳上輕鬆製備,無需使用任何還原劑或氧化劑。通過以下測試對材料進行表徵: 進行 X 射線衍射以研究材料的晶體結構;拉曼光譜研究微觀結構; X 射線光電子能譜 (XPS) 以研究其表面化學。通過掃描電子顯微鏡 (SEM) 和透射電子顯微鏡 (TEM) 獲得形態和結構信息。在 1M KOH 中進行電化學阻抗譜、線性掃描伏安法以研究材料的電化學性質。在 ≤ 300 mV 的低過電位和 68 的低 Tafel 斜率下,獲得了 400 mA.cm-2 的電流密度。這種 Ni(OH)2/NiOOH 在室溫條件下很容易製備。這種材料不僅快速簡便,而且具有成本效益和環保性。
The quest for renewable energy has been one of the grand challenges facing humanity in modern times. Among the numerous solutions proposed and explored to overcome this issue, is oxygen evolution reaction OER. OER represents a key and convenient process to generate hydrogen and oxygen through water splitting. However, the sluggish nature of the OER represents a bottleneck. Precious metal oxides such as RuO2 and IrO2 have exhibited excellent performance, but they are not suitable for practical large-scale production owing to their high cost and scarcity. As a result, non-precious metal oxides are now being explored. Herein, we therefore report a multi-metal nickel-based (oxy)hydroxide based on Fe, V, Cr, Ti through a fast and facile chemical bath deposition. This new catalyst is easily prepared on industrial nickel foam under room temperature without the use of any reducing or oxidizing agent. The material was characterized by means of the following tests: X-ray diffractometry was performed to study the crystalline structure of the material; Raman spectroscopy to investigate the microstructure; X-ray photoelectron spectroscopy (XPS) to study its surface chemistry. Morphology and structural information were obtained by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical impedance spectroscopy, linear scan voltammetry in 1M KOH were performed to study the material’s electrochemical properties. With low overpotentials ≤ 300 mV and a low Tafel slope of 43, a current density of 453 mA.cm-2 was obtained. This NiOOH is easily prepared under room temperature condition. This material is not only fast and facile, but also cost-effective and eco-friendly.
[1] Liu, J., Zheng, Y., Jiao, Y., Wang, Z., Lu, Z., Vasileff, A. and Qiao, S.Z., 2018. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small, 14(16), p.1704073.
[2] Lee, Y., Suntivich, J., May, K.J., Perry, E.E. and Shao-Horn, Y., 2012. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 3(3), pp.399-404.
[3] Zhang, B., Zheng, X., Voznyy, O., Comin, R., Bajdich, M., García-Melchor, M., Han, L., Xu, J., Liu, M., Zheng, L. and de Arquer, F.P.G., 2016. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 352(6283), pp.333-337.
[4] Subbaraman, R., Tripkovic, D., Chang, K.C., Strmcnik, D., Paulikas, A.P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V. and Markovic, N.M., 2012. Trends in activity for the water electrolyser reactions on 3 d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials, 11(6), pp.550-557.
[5] Rao, Y., Wang, Y., Ning, H., Li, P. and Wu, M., 2016. Hydrotalcite-like Ni (OH) 2 nanosheets in situ grown on nickel foam for overall water splitting. ACS applied materials & interfaces, 8(49), pp.33601-33607.
[6] Lee, J., Lim, G.H. and Lim, B., 2016. Nanostructuring of metal surfaces by corrosion for efficient water splitting. Chemical Physics Letters, 644, pp.51-55.
[7] Gao, M., Sheng, W., Zhuang, Z., Fang, Q., Gu, S., Jiang, J. and Yan, Y., 2014. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Journal of the American Chemical Society, 136(19), pp.7077-7084.
[8] Yu, L., Wu, L., McElhenny, B., Song, S., Luo, D., Zhang, F., Yu, Y., Chen, S. and Ren, Z., 2020. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 13(10), pp.3439-3446.
[9] Balram, A., Zhang, H. and Santhanagopalan, S., 2017. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS applied materials & interfaces, 9(34), pp.28355-28365.
[10] He, Q., Wan, Y., Jiang, H., Pan, Z., Wu, C., Wang, M., Wu, X., Ye, B., Ajayan, P.M. and Song, L., 2018. Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Letters, 3(6), pp.1373-1380.
[11] Song, F., Busch, M.M., Lassalle-Kaiser, B., Hsu, C.S., Petkucheva, E., Bensimon, M., Chen, H.M., Corminboeuf, C. and Hu, X., 2019. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS central science, 5(3), pp.558-568.
[12] Lee, S., Bai, L. and Hu, X., 2020. Deciphering iron‐dependent activity in oxygen evolution catalyzed by nickel–iron layered double hydroxide. Angewandte Chemie International Edition, 59(21), pp.8072-8077.
[13] Zhang, J., Liu, J., Xi, L., Yu, Y., Chen, N., Sun, S., Wang, W., Lange, K.M. and Zhang, B., 2018. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. Journal of the American Chemical Society, 140(11), pp.3876-3879.
[14] Nithya, V.D., Selvan, R.K., Sanjeeviraja, C., Radheep, D.M. and Arumugam, S., 2011. Synthesis and characterization of FeVO4 nanoparticles. Materials Research Bulletin, 46(10), pp.1654-1658.
[15] Wei, Q., Wang, Q., Li, Q., An, Q., Zhao, Y., Peng, Z., Jiang, Y., Tan, S., Yan, M. and Mai, L., 2018. Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. Nano Energy, 47, pp.294-300.
[16] Li, W., Dahn, J.R. and Root, J.H., 1995. Solid State Ionics IV, Nazri, GA, Tarascon, JM, and Schreiber, M., Eds., Pittsburgh: Materials Research Society, 1995. In Mater. Res. Soc. Symp. Proc (Vol. 369, p. 69).
[17] Peng, Z., Wei, Q., Tan, S., He, P., Luo, W., An, Q. and Mai, L., 2018. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chemical communications, 54(32), pp.4041-4044.
[18] Wang, W., Kim, S., Chen, B., Nie, Z., Zhang, J., Xia, G.G., Li, L. and Yang, Z., 2011. A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte. Energy & Environmental Science, 4(10), pp.4068-4073.
[19] Jin, Z., Lv, J., Jia, H., Liu, W., Li, H., Chen, Z., Lin, X., Xie, G., Liu, X., Sun, S. and Qiu, H.J., 2019. Nanoporous Al‐Ni‐Co‐Ir‐Mo High‐Entropy Alloy for Record‐High Water Splitting Activity in Acidic Environments. Small, 15(47), p.1904180.
[20] Qiu, H.J., Fang, G., Gao, J., Wen, Y., Lv, J., Li, H., Xie, G., Liu, X. and Sun, S., 2019. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Materials Letters, 1(5), pp.526-533.
[21] Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J. and Chen, H.M., 2017. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46(2), pp.337-365.
[22] Thierry, D., Persson, D., Leygraf, C., Delichere, D., Joiret, S., Pallotta, C. and Hugot‐Le Goff, A., 1988. In‐Situ Raman Spectroscopy Combined with X‐Ray Photoelectron Spectroscopy and Nuclear Microanalysis for Studies of Anodic Corrosion Film Formation on Fe‐Cr Single Crystals. Journal of the Electrochemical Society, 135(2), p.305.