| 研究生: |
黃明彥 Huang, Ming-Yen |
|---|---|
| 論文名稱: |
雙粒子糾纏態之特例下的Szilard引擎 Special case of two particle entangled state on Szilard engine |
| 指導教授: |
周忠憲
Chou, Chung-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 馬克士威妖 、Szilard引擎 、熱力學第二定律 |
| 外文關鍵詞: | Szilard engine, the second law of thermodynamics |
| 相關次數: | 點閱:68 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在熱力學的發展過程中,馬克士威妖在對熱力學第二定律的討論中扮演了重要的角色。而Szilard引擎是其中一種廣為討論的馬克士威妖的思考實驗。這個模型可以幫助我們討論關於在測量過程中熵的減少和資訊的流出的關係。此外,在整個循環過程中所吸收的熱及做出的功也可以被計算。不過,對於量子的Szilard引擎,有一個問題。如果一開始的狀態並不是處於熱平衡態,而是處於糾纏態。對整個熱力學過程有怎樣的差別呢?
在這篇文章中,我會引入量子版本的Szilard引擎。並且考慮幾種不同的雙粒子糾纏初始態。在用到無限位能井的本模型中,我將會說明吸收的熱跟流出的資訊並無關係,但依然遵守熱力學第二定律。我也將會在量子Szilard引擎中引入一些特例的初始態。這些態具有類似於費米子或是波色子的性質,並可以用以分析全同粒子在引擎中的效應。
In the development of thermodynamics, Maxwell's demon plays an important role in discussing the second law of thermodynamics. Also, Szilard engine is one of the widely discussed thought experiment for Maxwell's demon. This model helps us to find the relation between the entropy decrease and information ow in detection process. Besides, heat and work transfer in processes in Szilard engine could be clarified. But there is a problem in a quantum Szilard engine: Assuming the initial state in Szilard engine is not the thermalized state, but the entangled state. What's the difference between those thermal processes?
In this thesis, I will investigate the quantum version of the Szilard engine and consider several cases of two-particle entangled initial states with different information flow. In the model of infinite quantum well, I will show that there is no relation between the absorbed heat and information ow. However, the second law of thermodynamics still holds. I'll also use some special initial states to analyze the identical particle effect which mimics the bosonic and fermionic properties of the quantum states in the quantum Szilard engine.
[1] Paul Bracken. A quantum version of the classical Szilard engine. Central European Journal of Physics, 12(1):1-8, 2014.
[2] Kerson Huang. Statistical Mechanics, 2nd edition. John Wiley & Sons: New York, page 184, 1987.
[3] Sang Wook Kim, Takahiro Sagawa, Simone De Liberato, and Masahito Ueda. Quantum Szilard engine. Physical Review Letters, 106(7):070401, 2011.
[4] Jonne V Koski, Ville F Maisi, Takahiro Sagawa, and Jukka P Pekola. Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon. Physical Review Letters, 113(3):030601, 2014.
[5] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM journal of research and development, 5(3):183{191, 1961.
[6] Harvey Leff and Andrew F Rex. Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing. Institute of Physics Publishing, London, page 4, 2002.
[7] Hai Li, Jian Zou, Jun-Gang Li, Bin Shao, and Lian-Ao Wu. Revisiting the quantum Szilard engine with fully quantum considerations. Annals of Physics, 327(12):2955-2971, 2012.
[8] Koji Maruyama, Franco Nori, and Vlatko Vedral. Colloquium: The physics of Maxwells demon and information. Reviews of Modern Physics, 81(1):1-23, 2009.
[9] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge, page 109, 2000.
[10] Martin B Plenio and Vincenzo Vitelli. The physics of forgetting: Landauer's erasure principle and information theory. Contemporary Physics, 42(1):25-60, 2001.
[11] É Roldán, Ignacio A Martinez, Juan MR Parrondo, and Dmitri Petrov. Universal features in the energetics of symmetry breaking. Nature Physics, 10(6):457, 2014.
[12] Pranaw Rungta, Vladimir Bužek, Carlton M Caves, Mark Hillery, and Gerard J Milburn. Universal state inversion and concurrence in arbitrary dimensions. Physical Review A,
64(4):042315, 2001.
[13] Takahiro Sagawa and Masahito Ueda. Second law of thermodynamics with discrete quantum feedback control. Physical Review Letters, 100(8):080403, 2008.
[14] Takahiro Sagawa and Masahito Ueda. Information Thermodynamics: Maxwell's Demon in Nonequilibrium Dynamics. Nonequilibrium Statistical Physics of Small Systems:
Fluctuation Relations and Beyond, pages 181-211, 2013.
[15] Claude Elwood Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948.
[16] Leo Szilard. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik, 53(11-12):840-856, 1929.
[17] William K Wootters. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80(10):2245, 1998.
[18] Zekun Zhuang and Shi-Dong Liang. Quantum Szilard engines with arbitrary spin. Physical Review E, 90(5):052117, 2014.
[19] Wojciech Hubert Zurek. Maxwells demon, Szilards engine and quantum measurements. In Frontiers of nonequilibrium statistical physics, pages 151{161. Springer, 1986.
[20] Wojciech Hubert Zurek. Quantum discord and Maxwells demons. Physical Review A, 67(1):012320, 2003.