| 研究生: |
黃士庭 Huang, Shih-Ting |
|---|---|
| 論文名稱: |
表面改質之聚氨酯孔洞支架並結合N-乙醯半胱胺酸抗氧化劑於大鼠脂肪幹細胞(rASCs)增殖與分化之評估 Evaluation of surface modified polyurethane porous scaffold in combined with N-acetylcysteine anti-oxidant for rat Adipose Stem Cells (rASCs) proliferation and differentiation |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 聚氨酯 、三維孔洞支架 、表面改質 、細胞貼附 、細胞分化 、細胞增殖 、N-acetylcysteine 、週期性壓縮細胞培養系統 |
| 外文關鍵詞: | polyurethane porous scaffold, surface modification, N-acetylcysteine, cell adherence, proliferation, differentiation, cyclic compression system |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗目標為建立一模擬組織環境且具有高氧氣通透性之三維孔洞支架,藉由聚氨酯本身優異的機械性質與耐久性,搭配週期性壓縮細胞培養系統促進脂肪幹細胞增殖與分化。聚氨酯(polyurethane, PU)為一具有良好機械性質與生物相容性之彈性體,基於這些特性使得聚氨酯被廣泛的應用於生醫相關領域,由於聚氨酯表面的疏水特性不利於細胞進行貼附,為了改善細胞與聚氨酯表面的親和性,表面改質是必須的。
本實驗使用的聚氨酯為美國食品藥物管理局(Food and Drug Administration, FDA)所認可之材料,具有良好機械性質與無毒特性。透過模板法製備聚氨酯三維孔洞支架 (孔洞大小:500µm-700µm),透過物理吸附將海藻酸鈉 (alginate)與第一型膠原蛋白 (type I collagen) 均勻吸附於支架表面,接著以天然交聯劑(genipin)將吸附於支架表面的天然高分子固定化,以利細胞進行表面貼附與遷移。
活性氧物質(Reactive oxygen species;ROS)的累積會破壞體內抗氧化防禦系統恆定性,會造成細胞DNA損傷,甚至導致細胞死亡。N-acetylcysteine (NAC) 是一種可清除幫助細胞抵禦ROS的藥品,可以在細胞培養過程中降低ROS對細胞的傷害,本實驗利用物理方法(blend)及化學方法(graft)將NAC與支架結合,最後將評估修飾後聚氨酯支架對大鼠脂肪幹細胞的抗氧化能力、細胞增殖與分化。
綜合各實驗結果,所製備之三維孔洞支架具有良好的孔洞連接性與無毒性,經過表面改質後,可提供良好的環境供細胞生長、貼附、遷移、分化,以化學方法(graft)結合10 mM NAC的支架,其抗氧化效果及細胞相容性最佳;將支架結合週期性壓縮細胞培養系統,由reverse transcription polymerase chain reaction (RT-PCR)的分析結果,三維空間並搭配週期性壓縮培養的結果較二維平面(tissue culture plate)所培養的基因表現量佳,證實此支架有利於大鼠脂肪幹細胞分化。
The goal of this study is to establish a cartilage-friendly three-dimensional porous cell culture scaffold that possesses a high oxygen throughput and tissue-like environments.
We developed a large pore anti-oxidative polyurethane (PU) scaffold by template leaching methods. The scaffold pore size is well defined by using sugar particles and the inner pore surface was modified with alginate/type I collagen by chemical crosslinking. N-acetylcysteine (NAC) has approved for clinical applications by Food and Drug Administration and also considered as a ROS scavenger can support cell growth. The NAC scaffolds for enhancing cells proliferation and differentiation have not published so far. The NAC PU scaffolds were combined with cyclic compression stimuli to promote rat adipose stem cells proliferation and differentiation into chondrogenic lineage.
In this study results, all of the PU samples are shown well pore-connectivity and biocompatibility. After surface modification, the PU samples provide an ECM-like microenvironments for cell proliferation, adherence, and differentiation. The 10 mM NAC grafted PU scaffolds has shown the best cell proliferation and nucleus distribution. The 10 mM NAC grafted PU scaffolds combination of cyclic compression has a synergistic effect on cells gene expression, these results were approved by reverse transcription polymerase chain reaction (RT-PCR). The anti-oxidative PU scaffolds combined with physical stimuli has an outstanding potential for ex vivo cells expansion and differentiation.
1. Mardani, M., et al., Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro. Iran J Basic Med Sci, 2013. 16: p. 763-771.
2. O'Neill, T.W. and D.T. Felson, Mechanisms of Osteoarthritis (OA) Pain. Curr Osteoporos Rep, 2018. 16: p. 611-616.
3. Lieberthal, J., N. Sambamurthy, and C.R. Scanzello, Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthr Cartil, 2015. 23: p. 1825-1834.
4. Landínez-Parra, N.S., D.A. Garzón-Alvarado, and J.S. Vanegas-Acosta, Mechanical Behavior of Articular Cartilage. IntechOpen, 2012: p. 197-216.
5. Karuppal, R., Current concepts in the articular cartilage repair and regeneration. J Orthop, 2017. 14: p. A1-A3.
6. Dewan, A.K., et al., Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int, 2014. 2014: p. 272481.
7. Erggelet, C. and P. Vavken, Microfracture for the treatment of cartilage defects in the knee joint - A golden standard? J Clin Orthop Trauma, 2016. 7: p. 145-52.
8. Vainieri, M.L., et al., Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomater, 2018. 81: p. 256-266.
9. Ishikawa, S., et al., Cartilage Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Silica Nonwoven Fabrics. Applied Sciences, 2018. 8: p. 1398.
10. Meng, Q., et al., A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration. Sci Rep, 2015. 5: p. 17802.
11. Johnstone, B., et al., Tissue engineering for articular cartilage repair – the state of the art. European Cells and Materials, 2013. 25: p. 248-267.
12. Bhosale, A.M. and J.B. Richardson, Articular cartilage: structure, injuries and review of management. Br Med Bull, 2008. 87: p. 77-95.
13. Beigi, M.H., et al., Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J Tissue Eng Regen Med, 2018. 12: p. 1327-1338.
14. Mata, M., et al., In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study. Stem Cells Int, 2017. 2017: p. 1-9.
15. Meng, F.G., et al., Chondrogenesis of mesenchymal stem cells in a novel hyaluronate-collagen-tricalcium phosphate scaffolds for knee repair. European Cells and Materials, 2016. 31: p. 79-94.
16. Duarte Campos, D.F., et al., Supporting Biomaterials for Articular Cartilage Repair. Cartilage, 2012. 3: p. 205-21.
17. Schätti, O., et al., A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. European Cells and Materials, 2011. 22: p. 214-225.
18. Teng, S., et al., Influence of biomechanical and biochemical stimulation on the proliferation and differentiation of bone marrow stromal cells seeded on polyurethane scaffolds. Exp Ther Med, 2016. 11: p. 2086-2094.
19. Liu, C., et al., Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials, 2012. 33: p. 1052-1064.
20. Uchida, N., et al., Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A, 2016. 104: p. 94-103.
21. Severn, C.E., et al., Polyurethane scaffolds seeded with CD34(+) cells maintain early stem cells whilst also facilitating prolonged egress of haematopoietic progenitors. Sci Rep, 2016. 6: p. 32149.
22. Angeloni, V., et al., Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomater, 2017. 63: p. 306-316.
23. Li, L., et al., Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration. ACS Appl Mater Interfaces, 2015. 7: p. 22618-29.
24. Costa, F., et al., N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci Rep, 2017. 7: p. 17374.
25. Li, W.Q., F. Dehnade, and M. Zafarullah, Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun, 2000. 275: p. 789-94.
26. Sin, D., et al., Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C, 2010. 30: p. 78-85.
27. Syed, B.A. and J.B. Evans, Stem cell therapy market. Nat Rev Drug Discov, 2013. 12: p. 185-186.
28. 葉嘉新, 盧., 幹細胞治療產品的產業發展與法規研究. 2013. 37: p. 1-5.
29. Thorpe, S.D., et al., Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem Biophys Res Commun, 2008. 377: p. 458-462.
30. Huang, A.H., et al., Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogels Eur Cell Mater, 2012. 19: p. 72-85.
31. Thorpe, S.D., et al., The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann Biomed Eng, 2010. 38: p. 2896-2909.
32. Li, J., et al., Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. J Cell Physiol, 2012. 227: p. 2003-2012.
33. Fehrenbacher, A., et al., Long-term mechanical loading of chondrocyte–chitosan biocomposites in vitro enhanced their proteoglycan and collagen content. Biorheology, 2006. 43: p. 709-720.
34. Chen, C.H., C.Y. Kuo, and J.P. Chen, Effect of cyclic dynamic compressive loading on chondrocytes and adipose-derived stem cells vo-vultured in highly elastic cryogel scaffolds. Int J Mol Sci, 2018. 19: p. 370-390.
35. Ray, P.D., B.W. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 2012. 24: p. 981-990.
36. 王馨翊, 聚氨酯薄膜於週期動態細胞培養之開發. 2017. 83: p. 1-83.
37. Kleinsmithf, L.J. and G.B. Pierce, Multipotentiality of Single Embryonal Carcinoma Cells'. Cancer Res, 1964. 24: p. 1-9.
38. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 1981. 78: p. 7634-7638,.
39. Thomson, J.A., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998. 282: p. 1145-1147.
40. Ludwig, T.E., et al., 20 Years of Human Pluripotent Stem Cell Research: It All Started with Five Lines. Cell Stem Cell, 2018. 23: p. 644-648.
41. Francis, M.P., et al., Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis, 2010. 6: p. 11-14.
42. Friedenstein, A.J., R.K. Chailakhjan, and K.S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 1970. 3: p. 393-403.
43. Caplan, A.I., Mesenchymal stem cells. Orthopaedic Research, 1991. 9: p. 641-650.
44. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006. 12: p. 459-465.
45. Amado, L.C., et al., Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. 2005. 102: p. 11474–11479.
46. Young, R.G., et al., Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair. J Orthop Res, 1998. 16: p. 406-413.
47. Horwitz, E.M., et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005. 7: p. 393-395.
48. Bunnell, B.A., et al., Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 2008. 45: p. 115-120.
49. 陳佳君, 張至宏, and 方旭偉, 仿生環境促進關節軟骨修復之技術. 化工, 2015. 62.
50. Sophia Fox, A.J., A. Bedi, and S.A. Rodeo, The basic science of articular cartilage: structure, composition, and function. Sports Health, 2009. 1: p. 461-468.
51. Mardani, M., et al., Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro. Iran J Basic Med Sci 2013. 16: p. 763-771.
52. Ling, P., et al., Oral agent for improving and protecting the function of joint comprising hyaluronic acid-phospholipid complexes. US 20090170808A1, 2009: p. 1-8.
53. Vainieri, M.L., et al., Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomaterialia, 2018. 81: p. 256-266.
54. Massagu´e, J., TGF-β signal transduction. Annu Rev Biochem, 1998. 67: p. 753-791.
55. Su, E.H., X. and G. Jiang, The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Tumori 2010. 96: p. 659-666.
56. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14: p. 88-95.
57. Deluzio, T.G., D.G. Seifu, and K. Mequanint, 3D scaffolds in tissue engineering and regenerative medicine: beyond structural templates? Pharm. Bioprocess., 2013. 1: p. 267-281.
58. Nemir, S. and J.L. West, Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng, 2010. 38: p. 2-20.
59. Ross, A.M., et al., Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small, 2012. 8: p. 336-355.
60. Flemming, R.G., et al., Efects of synthetic micro- and nano-structured surfaces
on cell behavior. Biomaterials, 1999. 20: p. 573Ð588.
61. Tiwari, A., B. Garipcan, and L. Uzun, Advanced surfaces for stem cell research. Wiley, 2017: p. 1-473.
62. Baker, B.M. and C.S. Chen, Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci, 2012. 125: p. 3015-3024.
63. Botto, J., A. danielopol, and E. Moser, Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature, 1977. 267: p. 531-532.
64. Benya, P.D. and J.D. Shaffer, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982. 30: p. 215-224.
65. Weber, G.F., M.A. Bjerke, and D.W. DeSimone, Integrins and cadherins join forces to form adhesive networks. Journal of Cell Science, 2011. 124: p. 1601-1601.
66. Wozniak, M.A., et al., Focal adhesion regulation of cell behavior. Biochim Biophys Acta, 2004. 1692: p. 103-119.
67. Tata, U., et al., A Novel Multiwell Device to Study Vascular Smooth Muscle Cell Responses Under Cyclic Strain. Journal of Nanotechnology in Engineering and Medicine, 2011. 2: p. 1-6.
68. Riehl, B.D., et al., Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng Part B Rev, 2012. 18: p. 288-300.
69. Adhikari, U., et al., Magnesium incorporated chitosan based scaffolds for tissue engineering applications. Bioact Mater, 2016. 1: p. 132-139.
70. Corporation, B., Testing Solutions from Bose.
71. Neumann, A.J., et al., Chondrogenesis of human bone marrow-derived mesenchymal stem cells is modulated by complex mechanical stimulation and adenoviral-mediated overexpression of bone morphogenetic protein 2. Tissue Eng Part A, 2013. 19: p. 1285-1294.
72. Teng, S., et al., Influence of biomechanical and biochemical stimulation on the proliferation and differentiation of bone marrow stromal cells seeded on polyurethane scaffolds. Exp Ther Med, 2016. 11: p. 2086-2094.
73. Gardner, O.F., et al., Asymmetrical seeding of MSCs into fibrin–poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J Tissue Eng Regen Med, 2017. 11: p. 2912-2921.
74. Ung, L., et al., Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond), 2017. 131: p. 2865-2883.
75. Denu, R.A. and P. Hematti, Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. Oxid Med Cell Longev, 2016. 2016: p. 2989076.
76. Duarte Campos, D.F., et al., Supporting Biomaterials for Articular Cartilage Repair. Cartilage, 2012. 3: p. 205-21.
77. Takahashi, T., et al., Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 2003. 107: p. 1912-1916.
78. Liu, A.M., et al., Chromosomal instability in in vitro cultured mouse hematopoietic cells associated with oxidative stress. Am J Blood Res, 2012. 2: p. 71-76.
79. Sun, L.Y., et al., Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. Biomedical Science, 2013. 20: p. 53.
80. Kim, H., J. Yun, and S.M. Kwon, Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells. Oxid Med Cell Longev, 2016. 2016: p. 2483163.
81. Wang, N., et al., Curcumin protects human adipose-derived mesenchymal stem cells against oxidative stress-induced inhibition of osteogenesis. J Pharmacol Sci, 2016. 132: p. 192-200.
82. Halliwell, B., Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J, 2014. 37(
): p. 99-105.
83. Fishbane, S., et al., N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol, 2004. 15: p. 251-260.
84. Kelly, G.S., Clinical Applications of N-acetylcysteine. Alternative Medicine Review, 1998. 3: p. 114-127.
85. Li, W.Q., F. Dehnade, and M. Zafarullah, Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun, 2000. 275: p. 789-794.
86. Lin, Y.Y., K.C. Hung, and S.H. Hsu, Stability of biodegradable waterborne polyurethane films in buffered saline solutions. Biointerphases, 2015. 10: p. 031006.
87. Consultants, I., A global overview of the thermoplastic polyurethane (TPU) market 2011: p. 1-3.
88. Cooper, S.T. and J. Guan, Advances in Polyurethane Biomaterials. 2016: p. 1-691.
89. Hong, Y., Electrospun fibrous polyurethane scaffolds in tissue engineering, in Advances in Polyurethane Biomaterials. 2016. p. 543-559.
90. Kucińska-Lipka, J., I. Gubanska, and A. Skwarska, Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering. Polymers, 2017. 9: p. 1-16.
91. Lamba, N.M.K., K.A. Woodhouse, and S.L. Cooper, Polyurethanes in biomedical applications. CRC Press, 1998: p. 1-45.
92. Valence, S., et al., Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm, 2013. 85: p. 78-86.
93. Kim, B.S., et al., Effect of nanofiber content on bone regeneration of silk fibroin/poly(epsilon-caprolactone) nano/microfibrous composite scaffolds. Int J Nanomedicine, 2015. 10: p. 485-502.
94. Przekora, A., Current Trends in Fabrication of Biomaterials for Bone and Cartilage Regeneration: Materials Modifications and Biophysical Stimulations. Int J Mol Sci, 2019. 20: p. 1-17.
95. Uchida, N., et al., Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications. J Biomed Mater Res A, 2016. 104: p. 94-103.
96. Li, M., et al., Cellular response to gelatin and fibronectin coated multilayer polyelectrolyte nanofilms. IEEE Trans Nanobioscience, 2005. 4: p. 1-11.
97. Gustafsson, Y., et al., Viability and proliferation of rat MSCs on adhesion protein-modified PET and PU scaffolds. Biomaterials, 2012. 33: p. 8094-8103.
98. Whiting, J., Scanning electron microscope (Training module). AMMRF: p. 1-98.
99. Shinde, U.A. and M.S. Nagarsenker, Characterization of gelatin-sodium alginate complex coacervation system. Pharm. Sci 2009. 71 p. 313-317.
100. Butler, M.F., Y.F. NG, and P.D.A. Pudney, Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. 2003. 41: p. 3941–3953.
101. Bart, J., et al., Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip, 2009. 9: p. 3481-8.
102. Mi, F.-L., S.-S. Shyu, and C.-K. Peng, Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43: p. 1985-2000.
103. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity International strandard, ISO 10993-5:2009(E), 2009: p. 1-42.
104. Wallin, R.F., A practical guide to ISO-10993-12-sample preparation and reference materials. International strandard, ISO 10993-12, 1998: p. 1-4.
105. Chuang, J.-J., et al., Effects of pH on the Shape of Alginate Particles and Its Release Behavior. Int J Polym Sci, 2017. 2017: p. 1-9.
106. Nava, M.M., et al., The effect of scaffold pore size in cartilage tissue engineering. J Appl Biomater Funct Mater, 2016. 14: p. e223-e229.
107. Garcia-Giralt, N., et al., A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis. J Biomed Mater Res A, 2008. 85: p. 1082-1089.
108. Ranella, A., et al., Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater, 2010. 6: p. 2711-2720.
109. Yu, B., et al., Simulated microgravity using a rotary cell culture system promotes chondrogenesis of human adipose-derived mesenchymal stem cells via the p38 MAPK pathway. Biochem Biophys Res Commun, 2011. 414 (2): p. 412-418.
110. Stromps, J.P., et al., Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? Biomed Res Int, 2014. 2014: p. 740926.
111. Maul, T.M., et al., Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol, 2011. 10: p. 939-953.
112. Li, Z., et al., Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med, 2010. 14(6A): p. 1338-46.
113. Kisiday, J.D. and D.D. Frisbie, Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. TISSUE ENGINEERING: Part A, 2009. 15: p. 10.
校內:2024-08-06公開